
EE290O Project

Yang Zhao

Arkadeb Ghosal

May 14, 2002

� A rectangular playground

� Robot scans the field

� If any object is found it
picks it up and returns to
the starting point

Demo I

High Level description

E Code

E_Machine

Implementation strategy

� Design from a high-level

� Guard the implementation by
real-time programming concepts
introduced in this course.

� Use Giotto concept: tasks, drivers,
triggers, modes, to describe our
design

� Implement the application by e-
code based on our E machine

High Level Description

Pick_upScan

Return

move the robot,
detect the object
check whether length of
track covered or not

Pick the object

Return to the
original point

If an object is detected

If the object has been
picked

If whole field has
been scanned

Our Scan Algorithm

� Scanning technique is very simple

� Not the best but it serves our
purpose

� The robot covers a pre-specified
distance called the track

� If it detects any object on the
track it goes to the pick up task.

� Otherwise on completion of an
even track, it takes an left U-turn
and continue.

� On comletion an odd track, it
takes an right U-turn and
continue.

U-turn taken by the robot

Shows one track of the robot

0

1
2

3

Turn_leftForward

Turn_right

move forward,
detect the object
check length of track covered

If arrived && track is even

If turn is over

If arrived && track is odd
If turn is over

Turn robot by
180° towards left
check timer

Turn robot by 180°
towards right
check timer

Scan

Refine the Scan task

Return Algorithm

� Ideally, should take the shortest
straight line distance

� There isn’t suitable math
function in LegOS to get the
angle

� Approximate the ideal return..

� If the object is at an even
numbered track, reverse, turn
right by 90° and move to the
origin

� If the object is at an odd
numbered track, go forward,
turn left by 90° and move to the
origin

3

0

2
1

Even numbered
track

2

Odd numbered
track

3

Return
Odd

Return
Even

return from an even track

Retrun

return from an odd track

Refine the Return task

A closer look

Turn_leftForward

Turn_right

Pick_upScan

Return

Scan the field with the robot
check detection sensor
check length of track covered

Pick up object
Check timer

Return to the origin

If sensor detects object

If object has been
picked up

If it has finished
scanning

move forward,
check detection sensor
check length of track covered

If arrived && track is even

If turn is over

If arrived && track is odd
If turn is over

Turn robot by
180° towards left
check timer

Turn robot by 180°
towards right
check timer

Return
Odd

Return
Even

If track is even If track is odd

Return
Odd

Return
Even

Turn left

Forward

Turn right

Pick up

The Giotto conceptualization

object is detected → record the
value of Rotation_1

time_out ∧ CT is odd

forward
check light sensor, check rot_1 sensor

arrived ∧ no_object ∧ CT is_even → CT++

time_out

arrived ∧ no_object ∧ CT is_odd → CT++

right_turn
check time trigger

back_even
check time trigger

left_turn
check time trigger

back_odd
check time trigger

pick_up
check time trigger

time_out

time_out ∧ CT is even

Adding concurrent tasks

Return
Odd

Return
Even

Turn left

Forward

Turn right

Pick up

object is detected → record the
value of Rotation_1

time_out ∧ CT is odd

forward
check light sensor, check rot_1 sensor

arrived ∧ no_object ∧ CT is_even → CT++

time_out

arrived ∧ no_object ∧ CT is_odd → CT++

right_turn
output_ CT
check time trigger

back_even
check time trigger

left_turn
output_CT
check time trigger

back_odd
check time trigger

pick_up
beep
check time trigger

time_out

time_out ∧ CT is even

What do we use ?

� motors
� motor a -- move forward
� motor b -- the radar motor

� combining motor a,b robot can take any turn
� motor c -- picks the object

� sensors
� rotation sensors

� rot_1, counts the no. of rotations taken by motor a
� rot_2, does the same thing for motor b

� light sensor
� detects object of pre-specified darkness

� object
� a black plastic cuboid of approx size 4cm X 1 cm

The Giotto Code
� sensor

light_sensor uses read_light_sensor
rot_1_sensor uses read_rot1_sensor
rot_2_sensor uses read_rot2_sensor

� //task declarations
task forward .. schedule c_forward()
task pick .. schedule c_pick()
task beep .. schedule c_beep()
task show .. schedule c_show()
task left_turn .. schedule c_left_turn()
task right_turn .. schedule c_right_turn()
task back_even .. schedule c_back_even()
task back_odd .. schedule c_back_odd()

� //mode_switch driver
driver got_a_block
.. if dark_true(light_sensor) then switch
driver arrived_even
.. if arrived_even_true (counter) then
switch
driver arrived_odd
.. if arrived_even_true (counter) then
switch
driver is_even
.. if track_is_even_true (counter) then
switch;

� mode mode_forward
//checks whether got_a_block or track over
//invokes task forward

� mode got_a_block
//checks whether ready to go back by time
//invokes pick up
//invokes beep

� mode go_back_odd
//performs the return to origin task from
//an odd_numbered track

� mode go_back_even
//performs the return to origin task from
//an even_numbered track

� mode reg_turn_left
//checks whether to switch to mode_forward
//invokes U-turn in left direction
//LCD display of how many tracks has been

covered

� mode reg_turn_right
//checks whether to switch to mode_forward
//invokes U-turn in left direction
//display of how many tracks has been

covered

The E code
• LS TS RS_1 RS_2 CT

• DARK FWD TURN_180 TURN_90 ROT_LEFT GAP

• void read_light_sensor //writes to LS
• void read_touch_sensor //writes to TS
• void read_rot1_sensor //writes to RS_1
• void read_rot2_sensor //writes to RS_2

• void write_count
// read CT
// increments CT and write back

• void set_rot1_sensor //sets SENSOR_1
• void set_rot2_sensor // sets SENSOR_2

• void stop_a // stop motor a
• void stop_b, stop_c

• void forward
// moving motor a in fwd dir

• void pick // moving motor c forward
• void drop // moving motor c in reverse

• void beep
//play sound

• int left_turn
//move b fwd ; move a fwd; move b in rev

• int right_turn ...

• void back_even
//read RS_1; read CT; calculate the Gap;;
//go bwd //90 degree right turn //go down

• void back_odd …

• void output_CT
// reads CT and writes on LCD

• int arrived_even
//reads CT & RS_1
//checks whether CT is even and RS_1 has the req

value

• int arrived_odd …

• int is_even
//reads counter value
//checks whether it is odd or even

• int dark
//reads LS
//checks light sensor for prespeified darkness value

The E Code (cont.)
• // the forward mode
• CALL: set_rot1_sensor;
• CALL: read_light_sensor;
• CALL: read_rot1_sensor;

• COND: arrived_even;
• //if not arrived_even check whether arrived_odd
• //if arrived_even, go to left_turn

• COND: arrived_odd;
• //if not arrived_odd resume going forward
• //if arrived_odd, go to right_turn

• SCHEDULE: forward;

• FUTURE: time_trigger
• //check sensor

• //check dark sensor
• COND: dark;
• // if not dark continue moving FWD
• // if dark pick up

• //stop and pick up
• CALL: read_rot1_sensor;
• CALL: stop_a;

• FUTURE: time_trigger;
• //start to return

• SCHEDULE: pick;

• //left_turn mode after forward
• CALL: stop_a;
• CALL: write_count;

• FUTURE: time_trigger;
• //start moving forward

• SCHEDULE: left_turn;

• //right_turn mode after forward
• CALL: stop_a;
• CALL: write_count;

• FUTURE: time_trigger;
• //start moving forward

• SCHEDULE: right_turn;

• //stop mode_2 after pick up
• CALL: stop_c;

• COND: is_even;
• //goto odd_return else goto even_return

• SCHEDULE: back_even;

• SCHEDULE: back_odd;

Demo II

� work as a to-and-fro carrier

� move in between two fixed points

� pick up an object from one point and drop it off at another

� On reaching a point it waits for some pre-specified time
and then turns back and returns to other point

� If an object is need to be send it should be kept in front of
the robot and it would pick it up on signaling

� reaching the other point it drops off the object

� If it is blocked during moving it signals to move away and
stops

� it resumes the motion once the obstacle has been moved

The modes

Pick_upTurn

Signal Forward Drop_off

Wait

arrived ∧ no_object

forward
check light sensor
check rot_1 sensor

time_out

time_out

drop
Check time trigger

beep
Check time trigger

pick
Check time trigger

turn
Check time trigger

Check time trigger

button_pressed

arrived ∧ carrying_object

time_out
time_out

Object detected

Object removed

Conclusion

� Things learned
� Real experience about real-time programming.

� not only software programming
� mechanical problems
� light sensor
� slight deviation can cause a lot of problems

� Understand and appreciate concepts introduced in this course
more deeply.

� Future dirction
� Feedback
� How to do efficient scanning
� Works together with Ptolemy

