
Embedded Software for Sensor Networks:
from Synchronous Specification to Distributed

Architecture

BAY Team
Yanmei Li, Alessandro Pinto, Bruno Sinopoli

Outline
� Motivation and Background
� Key Concept
� Design Flow
� Our system
� GALS mapping
� Demo

The designer problem

Design Implementation Frustration

Debugging

Motivation
� Is synchronous model appropriate to

describe distributed sensor networks?
� Define a design flow from high level

specification and verify its behavior
� Automatic code generation
� Distribute synchronous specification on

GALS architecture

Motivation

Large scale distributed systems necessarily exploit very complex behavior

Need to make complex behavior as deterministic as possible

The hardware platform
� System board (rene2)

� ATMEL 4Mhz, 8bit MCU, 512 bytes RAM, 16K pgm
flash

� 900Mhz Radio: 1-100 ft. range
� I2C EPROM (logging)
� Base-station ready
� stackable expansion connector

� all ports, i2c, pwr, clock…

� Sensor boards (basic)
� basic photo, temp

� Motor-Servo board interfaces any combination
of two motors, servos, and solenoids to a toy car
platform

Event Based Programming Model
� System composed of state machines
� Each State Machine is a TinyOS “component”
� Command and event handlers transition a

component from one state to another
� Quick, low overhead, non-blocking state transmissions

� Allows many independent components to share a
single execution context
� Emerging as design paradigm for large scale systems

� “Tasks” are used to perform computational work
� Run to completion, Atomic with respect to each other

Composition to Complete
Application

RFM

Radio byte

Radio Packet

UART

Serial Packet

i2c

Temp

photo

Active Messages

clocks
bit

byte

packet

Route map router sensor applnapplication

HW

SW

Synch vs Asynch
� In Synchronous models

� “Reaction based”
� Absence (⊥) can be sensed and used in the

specification of behaviors
� A global tick exists

� In Asynchronous models
� “Signal based”
� No global tick
� Reaction cannot be observed anymore
� ⊥ cannot be sensed

Endochronicity
� define

desynchronization of P
� This map is unique but not invertible

aσσ �
aPP �

“If P satisfies a special condition called
endochrony, then there exists a
unique such that holds”

aa P∈∀ σ
P∈σ aσσ �

Endochronicity: Meaning
� STS
� Set of variables
� W’ clock inference of W () if

knowing presence/absence of
allows deriving the presence absence of

� If then
the process is endochronous

ρ,,Θ=Φ V
VWW ⊆⊆'

WW �'
'Wv ∈

Wv ∈
VVVV ���)...2()1()0(0 =

Isochronicity
� In general

� WE want the equality to hold (no spurious behavior
due to asynchronous communication)

)||()||(a
a

aa QPQP ⊆

“If (P,Q) satisfies a special condition called
isochrony then the equality indeed holds”

Isochronicity: Meaning
if b = T
 emit u(false)TTTT ⊥⊥⊥ FFFF ⊥⊥⊥

if b == T
 emit u(false)

TFTT ⊥⊥⊥

FFF ⊥

TFTT

if a==T
 if b == T
 emit u(false)TFTT ⊥⊥⊥

FFF ⊥⊥⊥⊥
TFFTFTT

High-Level Specification: Esterel

� Synchronous language
� Control-dominated software or

hardware reactive system
� High-level programming using

functional models
� C code is automatically generated

Design Flow
� Implement functional

specification using high-level
language (Esterel)

� Directly generate function
modules(C code) through
compiling

� Build interfaces and wrappers
needed by the execution
platform

Run on an embedded target !

Target
Execution
Platform

Code
Generation

Performance evaluation

Design Concepts

Functional
Specification

Compiler

System Structure

Cluster1

TURN!

Cluster2

TURN!

E1 L1
T1

Ext_Node1
sensor

RF

Int_Node1
sensor

RF

T2 L2 E2

Int_Node2
sensor

RF

Ext_Node2
sensor

RF

Distributed wireless sensor nodes detect the coming cars and their
directions, communicate with neighbor nodes, and control the cars to
avoid collision

High-Level Description

module extnode:
Loop

await CAR;
emit TO_N

end loop

module Cluster:
loop
await FROM_NC;
await E;

emit CAR_TURN
each L
||
loop

await E;
emit TO_NC

each L
||
loop

await T;
emit CAR_TURN;
emit TO_NC

each L

module intnode:
loop

await [CAR or FROM_N];
present CAR then

present FROM_N then
emit T

else
[await FROM_N;
emit L]

end present
else

present FROM_N then
[await CAR;
emit E]

end present
end present

end loop

Cluster1

TURN!

Cluster2

TURN!

Ext_Node1
sensor

RF
Int_Node1

sensor

RF
Int_Node2

sensor

RF
Ext_Node2

sensor

RF

The real World

Esterel –A <modulename>.strl

Make it Endochronous
� Simple solution: add signaling

� For each signal add a boolean flag which
indicates presence/absence

� During the execution the functions will wait
for all the flags and then will react

� Very expensive in general:
� If (flag==T) { set_input;set_arrived}
� If (all_flag) {react;reset_arrived}

Possible Optimization
� Clock analysis: reduce the number of

signals in the protocol
h

B1

B2

21 BB �

Our Case
module extnode:
Loop

await CAR;
emit TO_N

end loop

This is endochronous:
}_,{)2(}{)1(NTOCARVCARV == �

module intnode:
loop

await [CAR or FROM_N];
present CAR then

present FROM_N then
emit T

else
[await FROM_N;
emit L]

end present
else

present FROM_N then
[await CAR;
emit E]

end present
end present

end loop

This is not endochronous since CAR
and FORM_N are not related:
if (messagePayload_ptr->sourceNodeID == DUMB_NODE) {

internal_I_FROM_N()}

else if (messagePayload_ptr->sourceNodeID ==
OTHER_SMART_NODE) {

internal_I_FROM_NC()}

internal()

Some discussion
� External node:

� Code size overhead 7%
� Internal node

� Code size overhead 18%
� The external node is already

endochronous
� Internal node needs some extra

signaling

Demo
� Assumption:

� Distance_TwoCarsInSameDirection>Dista
nce(ext_node1, ext_node2)

� Cases:
� Two cars are entering this region
� One is entering, the other is leaving

Summary
� Very fast and easy design flow
� The overhead is acceptable
� There is enough room for optimization
� It makes sense if a centralized

description of the algorithm makes
sense

Credits
� Albert Benveniste for inspiring our work
� Prof. Culler and his students for tinyOS

support and mote platform
development

� Sarah Bergbreiter & Kris Pister for
building the robot platform

