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The designer problem

Design Implementation Frustration 

Debugging 



Motivation
� Is synchronous model appropriate to 

describe distributed sensor networks?
� Define a design flow from high level 

specification and verify its behavior
� Automatic code generation
� Distribute synchronous specification on 

GALS architecture



Motivation

Large scale distributed systems necessarily exploit very complex behavior

Need to make complex behavior as deterministic as possible



The hardware platform
� System board (rene2)

� ATMEL 4Mhz, 8bit MCU, 512 bytes RAM, 16K pgm
flash

� 900Mhz Radio: 1-100 ft. range
� I2C EPROM (logging)
� Base-station ready
� stackable expansion connector 

� all ports, i2c, pwr, clock…

� Sensor boards (basic)
� basic photo, temp

� Motor-Servo board interfaces any combination 
of two motors, servos, and solenoids to a toy car 
platform



Event Based Programming Model
� System composed of state machines
� Each State Machine is a TinyOS “component”
� Command and event handlers transition a 

component from one state to another
� Quick, low overhead, non-blocking state transmissions

� Allows many independent components to share a 
single execution context
� Emerging as design paradigm for large scale systems

� “Tasks” are used to perform computational work
� Run to completion, Atomic with respect to each other
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Synch vs Asynch
� In Synchronous models

� “Reaction based” 
� Absence (⊥ ) can be sensed and used in the 

specification of behaviors
� A global tick exists

� In Asynchronous models 
� “Signal based”
� No global tick
� Reaction cannot be observed anymore 
� ⊥ cannot be sensed



Endochronicity
� define            

desynchronization of P
� This map is unique but not invertible

aσσ �
aPP �

“If P satisfies a special condition called 
endochrony, then                  there exists a 
unique           such that                 holds”

aa P∈∀ σ
P∈σ aσσ �



Endochronicity: Meaning
� STS
� Set of variables
� W’ clock inference of W (          )  if 

knowing presence/absence of           
allows deriving the presence absence of

� If                                              then 
the process is endochronous
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Isochronicity
� In general

� WE want the equality to hold (no spurious behavior 
due to asynchronous communication)

)||()||( a
a

aa QPQP ⊆

“If (P,Q) satisfies a special condition called 
isochrony then the equality indeed holds”



Isochronicity: Meaning
if b = T
  emit u(false)TTTT ⊥⊥⊥ FFFF ⊥⊥⊥

if b == T
  emit u(false)

TFTT ⊥⊥⊥

FFF ⊥

TFTT

if a==T
  if b == T
    emit u(false)TFTT ⊥⊥⊥

FFF ⊥⊥⊥⊥
TFFTFTT



High-Level Specification: Esterel

� Synchronous language
� Control-dominated software or 

hardware reactive system
� High-level programming using 

functional models
� C code is automatically generated



Design Flow
� Implement functional 

specification using high-level 
language (Esterel)

� Directly generate function 
modules(C code) through 
compiling

� Build interfaces and wrappers 
needed by the execution 
platform 

Run on an embedded target !
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System Structure
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Distributed wireless sensor nodes detect the coming cars and their 
directions, communicate with neighbor nodes, and control the cars to 
avoid collision



High-Level Description

module extnode:
Loop

await CAR;      
emit TO_N

end loop

module  Cluster:
loop
await FROM_NC;
await E;

emit CAR_TURN 
each L
||
loop

await E;
emit TO_NC

each L
||
loop

await T;
emit CAR_TURN;
emit TO_NC   

each L

module intnode:
loop

await [CAR or FROM_N];  
present CAR then

present FROM_N then 
emit T

else
[await FROM_N;    
emit L]

end present
else

present FROM_N then
[await CAR;
emit E]

end present
end present

end loop
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The real World

Esterel –A <modulename>.strl



Make it Endochronous
� Simple solution: add signaling

� For each signal add a boolean flag which 
indicates presence/absence

� During the execution the functions will wait 
for all the flags and then will react

� Very expensive in general: 
� If (flag==T) { set_input;set_arrived}
� If (all_flag) {react;reset_arrived}



Possible Optimization 
� Clock analysis: reduce the number of 

signals in the protocol
h
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Our Case
module extnode:
Loop

await CAR;      
emit TO_N

end loop

This is endochronous:
}_,{)2(}{)1( NTOCARVCARV == �

module intnode:
loop

await [CAR or FROM_N];  
present CAR then

present FROM_N then 
emit T

else
[await FROM_N;    
emit L]

end present
else

present FROM_N then
[await CAR;
emit E]

end present
end present

end loop

This is not endochronous since CAR 
and FORM_N are not related:
if (messagePayload_ptr->sourceNodeID == DUMB_NODE) {

internal_I_FROM_N()}

else if (messagePayload_ptr->sourceNodeID ==
OTHER_SMART_NODE) {

internal_I_FROM_NC()}

internal()



Some discussion
� External node:

� Code size overhead 7%
� Internal node

� Code size overhead 18%
� The external node is already 

endochronous
� Internal node needs some extra 

signaling



Demo
� Assumption:

� Distance_TwoCarsInSameDirection>Dista
nce(ext_node1, ext_node2)

� Cases:
� Two cars are entering this region
� One is entering, the other is leaving



Summary
� Very fast and easy design flow
� The overhead is acceptable
� There is enough room for optimization 
� It makes sense if a centralized 

description of the algorithm makes 
sense 
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