Embedded Software for Sensor Networks:

from Synchronous Specification to Distributed
!'- Architecture

BAY Team

Yanmei Li, Alessandro Pinto, Bruno Sinopol

i Outline

= Motivation and Background
= Key Concept

= Design Flow

= Our system

= GALS mapping

= Demo

i The designer problem

Debugging

i Motivation

= |S synchronous model appropriate to
describe distributed sensor networks?

= Define a design flow from high level
specification and verify its behavior

= Automatic code generation

= Distribute synchronous specification on
GALS architecture

Large scale distributed systems necessarily exploit very complex behavior

.

Need to make complex behavior as deterministic as possible

The hardware platform

stem board (rene2)

= ATMEL 4Mhz, 8bit MCU, 512 bytes RAM, 16K pgm
flash

= 900Mhz Radio: 1-100 ft. range
12C EPROM (logging)
= Base-station ready
stackable expansion connector
= all ports, i2c, pwr, clock...
= Sensor boards (basic)
= basic photo, temp
= Motor-Servo board interfaces any combination

of two motors, servos, and solenoids to a toy car
platform

i Event Based Programming Model

System composed of state machines
Each State Machine is a TinyOS “component”

Command and event handlers transition a
component from one state to another
= Quick, low overhead, non-blocking state transmissions

Allows many independent components to share a
single execution context
= Emerging as design paradigm for large scale systems

“Tasks” are used to perform computational work
= Run to completion, Atomic with respect to each other

Composition to Complete
‘L Application

pplication | Route ma P | | router sensor appln

b1 w1 Wl

SW

HW

i Synch vs Asynch

= In Synchronous models
« “Reaction based”

= Absence ([J) can be sensed and used in the
specification of behaviors

= A global tick exists

= In Asynchronous models
= “Signal based”
= No global tick
= Reaction cannot be observed anymore
= [cannot be sensed

i Endochronicity

s o 0® deflne P~ P?
desynchronization of P

= This map Is unique but not invertible

“If P satisfies a special condition called
endochrony, then Jo® OP? there exists a
unique g [P such that g — g holds”

i Endochronicity: Meaning

m STS CD:<V,@,,0>
s Set of variables W'UW 0OV

= W’ clock inference of W (W'—=W) If
knowing presence/absence of vOW'
allows deriving the presence absence of

v LW

s If 0=VOO) V@D —=V(2)..>V then
the process Is endochronous

i Isochronicity

= In general (P[[Q)* O (P° s Q%)

= WE want the equality to hold (no spurious behavior
due to asynchronous communication)

“If (P,Q) satisfies a special condition called
Isochrony then the equality indeed holds”

Isochronicity: Meaning

ifb=T

ﬁ‘ TTOTOOT CuSEESM F F [F U F
l ifb==T

FFOF

emit u(false)
TTOFOOT

v

TTFET

TTFETFFET [
ifb==T FFOOOOF

TTOFDOOT emit u(false)

i High-Level Specification: Esterel

= Synchronous language

s Control-dominated software or
hardware reactive system

= High-level programming using
functional models

= C code Is automatically generated

* Design Flow

= Implement functional

specification using high-level
language (Esterel)
= Directly generate function
modules(C code) through
compiling
= Build interfaces and wrappers ‘ .
Compiler

needed by the execution
é Run on an embedded target ! _l l

platform

System Structure

Distributed wireless sensor nodes detect the coming cars and their
i directions, communicate with neighbor nodes, and control the cars to
: avoid collision

Clusterl Cluster2

Ext_Nodel Int_Nodel Ext _Node2

* High-Level Description

Clusterl

loop
await E;

each L

loop
await E;

each L

loop
await T;

each L

module Cluster:

await FROM_NC;

emit CAR_TURN %

emit TO_NC

emit CAR_TURN;
emit TO_NC

Ext_Nodel

Int_Nodel

Cluster2

Int_Node2

Ext_Node2

module intnode:

module extnode:
Loop
await CAR;
emit TO_N
end loop

loop
await [CAR or FROM_N];
present CAR then
present FROM_N then

emit T

else
[await FROM_N;
emit L]

end present

else

present FROM_N then
[await CAR;
emit E]

end present
end present
end loop

‘L The real World

i Make 1t Endochronous

= Simple solution: add signaling

= For each signal add a boolean flag which
Indicates presence/absence

= During the execution the functions will wait
for all the flags and then will react

= Very expensive In general:
« If (flag==T) { set_input;set_arrived}
« If (all_flag) {react;reset_arrived}

i Possible Optimization

= Clock analysis: reduce the number of
signals in the protocol

PN
ﬁﬁﬁ Bl— B2

i Our Case

module extnode:
Loop
await CAR;
emit TO_N
end loop

module intnode:
loop
await [CAR or FROM_N];
present CAR then
present FROM_N then

emit T

else
[await FROM_N;
emit L]

end present

else

present FROM_N then
[await CAR;
emit E]

end present
end present
end loop

This Is endochronous:
V(1) ={CAR}—V (2) ={CAR,TO _ N}

This I1s not endochronous since CAR
and FORM_N are not related:

i f (messagePayl oad_ptr->sourceNodel D == DUVMB_NODE) ({
internal I _FROM N()}

el se if (messagePayl oad _ptr->sourceNodel D ==
OTHER _SMART_NODE) {

internal | FROM NC()}

internal ()

i Some discussion

s External node:
= Code size overhead 7%

= Internal node
= Code size overhead 18%

= The external node is already
endochronous

s Internal node needs some extra
signaling

i Demo

= Assumption:

= Distance TwoCarsIinSameDirection>Dista
nce(ext_nodel, ext node2)

= Cases:
= TWoO cars are entering this region
= One Is entering, the other is leaving

i Summary

= Very fast and easy design flow
= The overhead Is acceptable
= There Is enough room for optimization

s It makes sense If a centralized
description of the algorithm makes
sense

i Credits

= Albert Benveniste for inspiring our work

= Prof. Culler and his students for tinyOS
support and mote platform
development

= Sarah Bergbreiter & Kris Pister for
building the robot platform

