
Platform-Based Embedded
Software Design and System
Integration for Autonomous

Vehicles

EE 290-O, UC Berkeley
Presentation by: Darren Liccardo and

Mark McKelvin
April 11, 2002

References/Acknowledgements

Platform-Based Embedded Software Design
and System Integration for Autonomous
Vehicles, Benjamin Horowitz, Judith
Liebman, Cedric Ma, T. John Koo, Alberto
Sangiovanni-Vincentelli, Shankar Sastry

Part I: Outline

� Overview
� A Helicopter Based UAV Example

- Background for a model helicopter
- Analyze the current Flight Control System
- New Generation Flight Control System

� Platform-Based Design Methods
- Synchronous control

Overview

• Automation control systems incorporate legacy
code and components designed to operate
independently (e.g. lacks re-usability)

• These systems operate under strict timing and
safety constraints

• Current design strategies ignore or grossly
estimate implementation constraints when
designing control laws

• Missed timing constraints and subtle transient
errors cause costly re-designs in the system

What is the problem?

Overview

• Develop a methodology based on the concept of
“platform-based” design
- Definition: a layer of abstraction that hides

unnecessary information about the layers below
- Build in modularity
- Make code re-usable and substitution of new

subsystems simple
• Guarantee performance

- Use a time-based controller
- Using Giotto software platform versus other

approaches

What is the proposed solution?

System Characteristics

• …that contain a sizable amount of real-time
embedded software

• …that integrate subsystems originally designed to
work independently of one another (i.e., sensors
from various vendors).

• …that must operate properly for human safety
• …that often re-use existing code in the form of

drivers or controllers
• Example: a helicopter based UAV

The proposed methodology works to integrate
systems…

A Helicopter Based UAV

Why a helicopter?
- A helicopter is a dynamically complex

machine. One needs to combine sensors (GPS
and INS), servo actuators, a wireless network,
a central computer, and control laws
describing the dynamics of the helicopter.

- An autonomous helicopter requires a
complicated hybrid controller to control
changes in flight modes and to sustain system
stability.

Background for a Model Helicopter

Autonomous flight is difficult because:
• The helicopter is unstable during hover
• Crashes are dangerous (even at low speeds)
• Electronic and mechanical systems must operate

harmoniously under harsh conditions
• Difficulty in obtaining an accurate dynamic model

- The controls are coupled
- Behaviors of a helicopter are different in

various flight modes

• Kyosho Concept 60
• Yamaha R-50
• Yamaha R-Max

The Berkeley Aerial Robot
(BEAR) Fleet

Current Flight Control System
(Components)

• Actuators
- consists of servo-

motors to control
helicopter dynamics
(main rotor and tail
rotor pitches)

• Sensors
- Inertial Navigation

System (INS)
- Global Positioning

System (GPS)
• Control computer

ServosINSGPS

Control Computer

Current Flight Control System
(Helicopter Dynamics)

P´(t) = V(t)
V´(t) = (1/m) R(�(t)) f(u(t))
�´(t) = �(�(t)) �(t)
�´(t) = I-1 [�(u(t)) - �(t) x �(t)]

where the linear position and velocity are given by P(t) and V(t)
respectively. Other parameters: m is the body mass; � is the
angular velocity; I is the inertial matrix, I � �3 x3 ; Euler
angles: � = [�,�,�]T ; input vector, u = [�M �T, B, A]T

(main rotor collective pitch, tail rotor collective pitch,
longitudinal cyclic pitch, lateral cyclic pitch); � : �3 	 �3 x3

maps the body rotational velocity to Euler angle velocity; and
x = [PT VT �T �T]T is the state vector.

Current Flight Control System
(Helicopter Dynamics)

• For control design, experimental system identification was
used to obtain the dynamic model of the helicopter

• A specific set of output tracking controllers were designed
- Each with static feedback: u(t) = Ki (x(t), r(t)),

where u(t) is associated with an output yi(t) =
hi(x(t)) such that yi(t) shall track ri(t) where yi, ri �

�4, hi : �12 � �4 , ki : �12 x �4 � �4 for each i � {1,
…, N} and N is the total number of output tracking

controllers
- Hence, appropriate switching between the controllers

allows high level tasks such as way-point navigation
and high-altitude are accomplished

R-50 Hovering

• Goal: basic autonomous flight
• Need: UAV with allowable payload
• Need: combination of GPS and Inertial

Navigation System (INS)
• GPS (senses using triangulation)

• Outputs accurate position data
• Available at low rate (5 Hz)

• INS (senses using accelerometer and
rotation sensor)
• Outputs estimated position with

unbounded drift over time
• Available at high rate (100 Hz)

• Fusion of GPS & INS provides needed high
rate and accuracy

GPS Card

GPS Antenna

INS

Current Flight Control System
(Sensors Overview)

Two Concurrent Processes

DQIGPS
• correct INS drift

w/GPS
• Slow (5Hz)

– 1Hz for INS update

DQICONT
• Main Control Loop
• Fast (100Hz)

– 50 Hz servo
– 25 Hz network

INS

GPS Card

DQICONT

DQIGPSSatellite

*

-Updates

*

-Synchronizes

*

*

*

-triggers

*

*

-triggers

*

-updates*

*

Take-over Board

*

-updates*

Servos

*

-updates*

S/W

updates

Process DQIGPS
(UML State & Activity Diagram)

Initializing

Shutting Dow n

Waiting

Read GPS Measurement

Copy Measurement to Shared Memory

Output GPS Update to INS

Working

/ count = 1

/ count = 2...5

1 Hz

Triggered by GPS at 5 Hz

Process DQIGPS
(UML Sequence Diagram)

Interal Timer GPS Card DQIGPS Shared Memory INS

trigger()

position()

data()

converted data()

5 Hz

Waiting

Read GPS

Copy to Shared Mem

Output to INS

Waiting
1 Hz

Process DQICONT
(State & Activity Diagram)

Initialize

Working

Shutdow n

Waiting Read INS Measurement Calculate Checksum

Compute Vb & Xe

Execute Control

Dow nload to Ground

Process Ground CommandUpdate Xe using GPS

/ ok
/ failed

/ count1 = 2,4

/ count1 = 3

/ count1 = 1

/ count1 = 1,3

/ count2 = 1

/ count2 = 2...20

Triggered by INS at 100 Hz

50 Hz

25 Hz

100 Hz5 Hz

Interal Timer INS DQICONT Take-over Board Ground

trigger()

position()

control()

status()

100 Hz

Waiting

Read DQI Measurement

Calculate Checksum

Compute Vb & Xe

Execute Control

Dow nload to Ground

Process Ground Command

Update Xe

Waiting

25 Hz

50 Hz

5 Hz

Process DQICONT
(UML Sequence Diagram)

Process DQICONT
(Collaboration Diagram)

Internal Timer INS

1: trigger()

DQICONT [Working] Kalman (Vb)

Take-over BoardGroundKalman (Xe)

2: position() 3: Vb()

4: control()

5: status()

6: X
e()

DQICONT [Waiting]

100 Hz

Who’s at the Controls?
(Sequence Diagram)

DQICONT Take-over Board Servo

control()

PWM()

YACS

trigger()

Execute Control
50Hz, 20ms

Wait for YACS trigger edge
Actuator Delay

(Small)

Control Surface

hinges()

Friction/Inertia
(Large)

Helicopter Dynamics

airf low ()

Physical Inertia (Largest)

Internal Clock

trigger()

100Hz

~47Hz, ~21.78ms

trigger()

Who’s at the Controls?

• Servo has different sampling period
(21.78ms) than INS (20ms)
– phase difference constantly changing

• Delay from DQICONT control calculation
to PWM generation varies
– jitters by up to 20ms
– Problem: difficult to analyze

• Sensors may differ in:
- Data formats, initialization schemes (usually requiring some

bit level coding), rates, accuracies, data communication
schemes, and even data types

• Differing communication schemes requires the most custom
written code per sensor

Current Flight Control System
(Sensor Configurations Example)

d d
GPSINS

Software Request Software

GPSINS

Pull Configuration

Shared
memory

Push Configuration

Current Flight Control System
(Limitations)

• Diverse assortment of devices
- Each new device communicates differently

(asynchronously)
- Lacks modularity

• Event-based nature
- Sensors are set to “push” data

- Incoming data is processed and sends the control
output to the actuators immediately

- Actuation does not occur synchronously, thus the
system tolerates a substantial amount of jitter

- Non-deterministic timing behavior

Next Generation Flight Control
System

• Time-based design (Giotto)
- Allow easy analysis of its closed loop behavior
- Maintain compatibility with existing devices that are

not time-based, such as sensors
- Creates a defined boundary between a system’s

synchronous and asynchronous elements

• Modular design (platform-based design)
- Ability to allow designer to choose between a mixture

of devices
- Must allow a configuration of the same software to

run on different helicopters which may have different
physical dynamics and devices

Synchronous Control

• Advantages of time-triggered framework:
– Allows for composability and validation

• These are important properties for safety critical systems like
the UAV controller

– Timing guarantees ensure no jitter
• Disadvantages:

– Bounded delay is introduced
• Stale data will be used by the controller

– Implementation and system integration become more difficult
• Platform design allows for time-triggered framework for the UAV

controller
– Use Giotto as a middleware to ease implementation:

• provides real-time guarantees for control blocks
• handles all processing resources
• Handles all I/O procedures

Component Space

Application Space

Platform-Based Design Overview
• Universal design strategy

• Goal is design reuse
• Decouple two design views

• Upper View: Application Space
• Lower View: Component Space
• Main motivation of project is this

decoupling of the control process
from the sensors & devices

• Interact through well-defined interface
• Platform instance is an

implementation of the interface
• Both views help specify the platform

making this a meet-in-the-middle
approach

Platform Based Design for UAVs

Sensors: INS, GPS
Actuators: Servo Interface

Vehicles: Yamaha R-50/R-Max

Control Applications (Matlab)• Goal
– Abstract details of sensors,

actuators, and vehicle
hardware from control
applications

• How?
– Synchronous Embedded

Programming Language
(i.e. Giotto)

– Platform

Synchronous Embedded
Programming

(Giotto)

Application Space
Architectural Space

Platform Based Design for UAVs

• Device Platform
– Isolates details of sensor/actuators

from embedded control programs
– Communicates with each

sensor/actuator according to its own
data format, context, and timing
requirements

– Presents an API to embedded
control programs for accessing
sensors/actuators

• Language Platform
– Provides an environment in which

synchronous control programs can
be scheduled and run

– Assumes the use of generic data
formats for sensors/actuators made
possible by the Device Platform

Sensors: INS, GPS
Actuators: Servo Interface

Vehicles: Yamaha R-50/R-Max

Synchronous Embedded
Programming

(Giotto)

Control Applications (Matlab)

Application Space
Architectural Space

Virtual Avionics
Platform

Device Platform

Language Platform

Recent Developments

• Kyosho Concept 60
– Hovering ID Model
– Autonomous Hover

• Yamaha R-50:
– Hovering ID Model
– Autonomous Hover
– Waypoint Navigation

• Yamaha R-Max
– ?

Outline: part II

• Time-Based Control Platform
– Modern Control Architectures
– Platform Based Design with Giotto

• Case Study: BEAR Helicopter
– Synchronous Control
– Helicopter Platform

Modern Control Architectures

• Modern control architectures
– Programmable components

• µProcessors, DSP
– Memory

• FLASH, RAM, ROM
– Sensors and Actuators

• Control laws implemented in software
• Unique difficulties with this mapping

Difficulties Mapping Software
Control to Programmable

Architectures
• Real-time

– Software is slower than hardware
– True concurrency is lost with single processor
– Efficient dynamic scheduling algorithms are

unverifiable
• Sensor and Actuator Characteristics

– Must be accounted for in software
– Must be abstracted for software portability

Introduce Abstraction

• Use platform based design
• Enforce static scheduling

– Restrict design space
– Verifiable real-time constraints

• Use Giotto!

Platform Based Design with
Giotto

Sensors: INS, GPS
Actuators: Servo Interface

Vehicles: Yamaha R-50/R-Max

Control Applications (Matlab)• Goal
– Abstract details of sensors,

actuators, and vehicle
hardware from control
applications

– Real-time verification

• How?
– Platform
– Synchronous Embedded

Programming Language
(i.e. Giotto)

Synchronous Embedded
Programming

(Giotto)

Application Space
Architectural Space

Introduction To Giotto
• Giotto is an abstract programmer’s model

for implementing embedded system
software

• Created to model periodic software tasks
and mode switches with hard real-time
constraints

• Sensor readings and tasks (periodic
functional units) are time triggered

More Giotto

• Giotto guarantees model will meet real-time
requirements on any platform
– Separates the platform-independent from the

platform-dependent concerns
– Abstracts away scheduling and platform-

dependent issues
• Designer can concentrate on system model and

assume deadlines are met independent of chosen
platform

Fitting Software Into Giotto

• Model periodic functional units as tasks
– sensor data reading and control calculations

occur periodically and can be modeled as tasks
• A set of concurrent tasks make up one

mode, for example: Hover Mode
• Modes repeat until a mode switch is

requested

Giotto Specifications
• Communication is instantaneous

– Time is accounted for within the tasks
• Input data cannot be refreshed in the middle

of a task
• Outputs from a task cannot be used until the

task deadline time
• Tasks are only guaranteed to finish by end

time, not to start at beginning time

V. Case Study: Helicopter UAV

Case Study: Helicopter

• Goals:
– Incorporate asynchronous input devices and

real-time controller
– Modular - to allow replacing subsystems

• How?
– Use Platform-Based Design
– Use Time-Based Controller

R-50 Hovering

• Goal: basic autonomous flight
• Need: UAV with allowable payload
• Need: combination of GPS and Inertial

Navigation System (INS)
• GPS (senses using triangulation)

• Outputs accurate position data
• Available at low rate & has jamming

• INS (senses using accelerometers and
gyroscopes)
• Outputs estimated position with

unbounded drift over time
• Available at high rate

• Fusion of GPS & INS provides needed high
rate and accuracy

GPS Card

GPS Antenna

INS

UAV System:
Sensor Overview

d d
GPSINS

Software Request Software

GPSINS

Pull Configuration

Shared
memory

Push Configuration

• Sensors may differ in:
• Data formats, initialization schemes (usually requiring some

bit level coding), rates, accuracies, data communication
schemes, and even data types

• Differing Communication schemes requires proprietary code for
each sensor

II. UAV System:
Sensor Configurations

Control Tasks

• Two tasks:
– Sensor Fusion

• Inputs from sensors
• Kalman filter for GPS and INS

– Control
• Computes control law
• Output to actuators

Synchronous Control: Giotto

Controller

INS

GPS

driver

Actuator

Time = t ms Time = t +10ms

Measurement
Fusion

Measurement
Fusion

Measurement
Fusion

Controller

Time = t +30ms

Delay Analysis

Controller

INS

GPS

driver

Actuator

Time = t ms Time = t +10ms

Measurement
Fusion

Measurement
Fusion

Measurement
Fusion

Controller

Time = t +30ms

Data In

Use Data

Data Out

III. Synchronous Control
• Advantages of time-triggered framework:

– Allows for composability and validation
• These are important properties for safety critical systems like

the UAV controller
– Timing guarantees ensure no jitter

• Disadvantages:
– Bounded delay is introduced

• Stale data will be used by the controller
– Implementation and system integration become more difficult

• Platform design allows for time-triggered framework for the UAV
controller
– Use Giotto as a middleware to ease implementation:

• provides real-time guarantees for control blocks
• handles all processing resources
• Handles all I/O procedures

Reduced Delay Model

Controller

INS

GPS

driver

Actuator

Time = t ms Time = t +10ms

Measurement
Fusion

Measurement
Fusion

Measurement
Fusion

Time = t +15ms

Control

Ideal Giotto System

• Would like to guarantee that control block finishes
as the system requires (say 5ms), but still only
runs every 20ms
– would like to model as follows:

SF SFSFSF

C C

x x xx

x
v F F

exit exitexit

w1=10 w1=10w1=10w1=10

w2=5 w2=5

Sensors

Reduced Delay Giotto System
• Cannot model such a system in Giotto

– Giotto mandates that finish time of a task be
based on its periodicity

– Instead create a new model
• call the control block with frequency = max delay

tolerated but only actually compute control when
needed

SF

C

x

x
v F

exitexit

w1=10

w2=5

Sensors

C F

exitw2=5

SF
xw1=10

C
x

v F

exit
w2=5

C F

exitw2=5

SF
xw1=10

C
x

v F

exit
w2=5

C F

exitw2=5

SF
xw1=10

C
x

v F

exit
w2=5

C F

exitw2=5

Platform Based Design for UAVs

• Device Platform
– Isolates details of sensor/actuators

from embedded control programs
– Communicates with each

sensor/actuator according to its own
data format, context, and timing
requirements

– Presents an API to embedded
control programs for accessing
sensors/actuators

• Language Platform
– Provides an environment in which

synchronous control programs can
be scheduled and run

– Assumes the use of generic data
formats for sensors/actuators made
possible by the Device Platform

Sensors: INS, GPS
Actuators: Servo Interface

Vehicles: Yamaha R-50/R-Max

Synchronous Embedded
Programming

(Giotto)

Control Applications (Matlab)

Application Space
Architectural Space

Virtual Avionics
Platform

Device Platform

Language Platform

The Control Computer

Data Processor

Giotto

API
Library

API
LibraryControlControl

Measurement FusionMeasurement Fusion

Control Computer

Actuator
Message
Actuator
Message

GPS
Message

GPS
Message

INS
Message

INS
Message

GPS INS Actuator
VAP

• Goal: Control UAV via
sensors/actuators

• Data Processor
– Handles the timing/interrupt of

sensors and actuators
– Moves sensor/actuator data

• No format conversion
• Saves time for Giotto tasks

• Shared Memory
– Serves as bridge between

synchronous and asynchronous
parts of system

– Circular buffer: allow
simultaneous read/write

The Control Computer
• Giotto Program

– Where control algorithms
(Control) and Kalman filter
(Measurement Fusion) reside
as Giotto tasks

• API Library
– Allows control programs to

interpret sensor data and send
data to actuator as generic,
device independent format

– Implemented as C routines

Data Processor

Giotto

API
Library

API
LibraryControlControl

Measurement FusionMeasurement Fusion

Control Computer

Actuator
Message
Actuator
Message

GPS
Message

GPS
Message

INS
Message

INS
Message

GPS INS Actuator
VAP

Example – From Computer’s Point of View

1. GPS/INS sends sensor data via serial
2. RTOS generates interrupt
3. RTOS fires Data Processor as ISR
4. Data Processor gets sensor data
5. D/P saves sensor data to shared

memory
6. RTOS fires Giotto process
7. Giotto fires Measurement Fusion task
8. M/F interprets sensor data via library

9. M/F computes combined
measurement and stores it to memory

10. Giotto fires Control task
11. Control uses combined measurement
12. Control task generates control and

saves it to shared memory
13. RTOS fires Data Processor
14. Data Processor gets control
15. D/P sends control to Servo Interface

GPS/INS

Data
Processor

RTOS

Serial
Buffer

Giotto

Measurement
Fusion Control

shm mem shm
1

2
4

3

5

6

7

8
9

11

10

12

14

13

Servo
Interface

15
Lib Lib

Data
Processor

Example – From Controller’s Point of View
Sensor

c_input sensor_input uses
c_get_sensor_inputs;

.

.

.

task control(‘inputs’)(‘outputs’) {
schedule c_control_task(‘inputs’)

}

.

.

.

taskfreq 1 do
control(control_driver);

• Refers to C function
• Sets shared memory for

Giotto’s internal use
• Assumes shared memory will

be filled with measurements

• Refers to C controller function
• Assumes measurements are

waiting in buffer that shared
memory points to

• May call library functions to
convert measurements

• Giotto runs the control task
• Shared memory passed into

control task by control_driver

The Simulator Computer
• Models the environment

surrounding Control Computer
• Dynamical Model

– Helicopter Dynamics
• Sensor/Actuator Models

– Simulate sensor/actuator
timing behavior and data
format

• Shared Memory
– State and control information
– Circular Buffer Control Computer

GPS
Model

INS
Model

Actuator
Model

Plant OutputPlant Output Plant
Input
Plant
Input

Dynamical Model

Simulator Computer

Combined
System

GPSINS Servos

Synchronous Controller Process

HIL Simulator

Control Computer

Virtual Avionics Platform

Sensor Suite Actuator Suite

UDP

Plant

API

GPS
Model

INS
Model

Actuator
Model

Plant OutputPlant Output Plant
Input
Plant
Input

Dynamical Model

Simulator Computer

Data Processor

Giotto

API
Library

API
LibraryControlControl

Measurement FusionMeasurement Fusion

Control Computer

Actuator
Message
Actuator
Message

GPS
Message

GPS
Message

INS
Message

INS
Message

VAP

Hardware-in-the-Loop Framework

Control Computer

Sensor Data In Actuator Out

Control Computation

HIL Simulator

• Project uses platform based design
& synchronous control to
implement a controller computer
that will:
• (eventually) fly on a UAV!
• (now) ‘flies’ a UAV simulator

• Hardware-in-the-loop has several
advantages:
• Safe & inexpensive testing
• Repeatable tests
• Partial simulations

• All have been useful for
implementing the new
design methodology

In Action – Process Windows Running

GPS
sensor
model

INS
sensor
model

Plant

Data
Processor

Giotto
Process

Display
Outputs

Plant’s
Receiver

In Action – OpenGL Visualization

Conclusions

• Developed Methodology
– Platform-based design

• Provides appropriate layers of abstraction
• Eases Software Reuse
• Eases Hardware Modifications

– Time-based control
• Verifiable real-time constraints
• Eases controller modifications

Conclusions
Original Control

Application

Application Space
Architectural Space

Virtual Avionics
Platform

• Exchanging sensors
• Controller remains same!
• Platform adapts

• Handles new data
types and formats

• Exchanging controller
• New controller use the

same API
• Giotto maintains timing

requirements

Original
Sensor
Choice

New
Sensor
Choice

New Control
Application

Language Platform

Device Platform

High Level Planning

H F
Flight Modes/FSM

Software Control
Tasks

Control Output

Helicopter Dynamics

Sensor Data

Future Work – Nested Platforms

Future Work – Nested Platforms

Helicopter Architecture

Low Level Controller

High Level Controller

References/Acknowledgements

Platform-Based Embedded Software Design
and System Integration for Autonomous
Vehicles, Benjamin Horowitz, Judith
Liebman, Cedric Ma, T. John Koo, Alberto
Sangiovanni-Vincentelli, Shankar Sastry

