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What Is Hytech?

J A model checker for Hybrid systems

A tool for automated analysis of embedded
systems

1 Procedure for checking linear CTL
requirements of linear hybrid automata has
been implemented in tool Hytech
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Examples of Hybrid systems

d manufacturing controllers

1 automotive and flight controllers
d medical equipment

J micro-electromechanical systems
1 robots

 mission critical applications



Hybrid Automaton

d A hybrid automaton A = (X, V, flow, Inv, init, E, jump, 2, syn)
O Variables
d Control Modes
4 Flow conditions
O Invariant conditions
O Initial conditions
O Control switches
O Jump Conditions
O Events



Thermostat automaton
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Flow and jumps

] states
(L the state (on,1.5) is admissible while the state (on, .5) is not
d jumps
[ thermostat automaton has two jumps ((on,3), (off,3)) and
((off,1),(on,1))
d flows

L ((off,3),(off,2)) and ((off,3), (off,2.5)) are flows of thermostat
automaton

O trajectories

[ a finite sequence of admissible states

O first state is an initial state and each pair of consecutive states in
the sequence is either a jump or flow
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Safety requirements

J whatisa safety requirement?

O it asserts that nothing bad will happen
O often specified by describing the “unsafe” values

] A satisfies the safety requirement specified by unsafe if the
state assertion unsafe is false for all reachable states of A

turn _ off
X=3
X=2
Uy=0
0720 turn _on
Xx=1

Thermostat automaton augmented for safety verification



Computing reachable states

Q Given a state assertion unsafe we try to compute another
state assertion reach which is true for reachable states of
the automaton

L for a state assertion ¢, Post(d) Is a state assertion that is true for the jump
and flow successors of the ¢-states

Q success of computation of reach depends on

O Post(¢) can be calculated reasonably efficiently for a restricted class of
hybrid automata called linear hybrid automata

O Iterative computation of reach must converge within a finite number of
Post applications and this can be guaranteed for certain restricted class of
linear hybrid automata such as class of timed automata



Linear Hybrid Automata

U hybrid automaton A is linear hybrid automaton if it
satisfies

O Linearity : for every control mode, the flow condition, the
Invariant condition, and the initial condition are convex linear
predicates and for every control switch jump condition is a convex
linear predicate

O flow independence : for every control mode, the flow condition is
a predicate over the variables in y only and not in X
O quite limiting but it allows
U clocks
O stopwatches
O clocks with bounded drift



Linear Hybrid Automata

J Theorem:

JIf Ais a linear hybrid automaton and ¢ is a linear state
assertion for A, then Post(¢) can be computed and the
result again is again a linear state assertion for A

 every flow curve can be replaced by a straight line between
the two endpoints

 This theorem enables
U automatic analysis
O safety verification
O temporal model checking
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Non-linear to linear hybrid
automata

U Clock Translation
1 Linear phase-portrait approximation



Clock translation
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turn _ off
Ix < |n(3/2) Otx=0



Linear phase-portrait approx.

Linear phase portrait approx. of thermostat automaton
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Tighter Linear phase portrait approx. of thermostat automaton




Safety Verification

Property to be verified:
The heater is active for less than 2/3 of the first hour of operation

turn _ off
X=3
X=2
Uy=0
0720 turn _on
Xx=1

Unsafe state:



Safety verification

y |z
1

Initial state  ¢o=init={(on,x=20y =00z =0),(off, false)}

Jump successor: none 1/2
Flow successor ¢:=Post(¢o) T
1/4 T+ %

={(on,x<302z+2<x<4z+20y =12),(off, false)} |

@2 = Post(¢1) Jump successor {(on, false), (off ,x =3 D% Sz< % Oy=12)}

Flow successor : closed

¢z:Post(¢1):{(on,x53EI22+2sxs4z+2[|y:z),(off,x:3EI%szs%[ly:z)}

@3 =Post(¢2) ={(on,x<302z+2<x<4z+20y =2),(off ,1SXS3DZ+ESySZ+2D22£XS4Z)}
3

¢3:Post(¢z):{(on,xs3D22+2sxs4z+2Dy:z)D(x:1D%szs%Dz+§sySZ+2)),(0ff ,1SXS3DZ+§SySZ+2DZZSXS4Z)}



flow successors of ¢, state

Safety verification

Z
Initial state @go=init ={(on,x =20y =00z =0), (off, false)} y
1
Jump SUCCessor. none 1/2
Flow successor  #:= Post(¢q) e 1
={(on,x<302z+2<x<4z+20y=12),(off, false)} |
2 X 3 X

@2 = Post(¢1) Jump successor {(on, false), (off ,x =3 D% Sz< % Oy=12)}

Flow successor : closed ¢, state

¢z:Post(¢1):{(on,x53EI22+2sxs4z+2[|y:z),(off,x:3EI%szs%[ly:z)}

@3 =Post(¢2) ={(on,x<302z+2<x<4z+20y =2),(off ,1SXS3DZ+ESySZ+2DZZSXS4Z)}
3

¢3:Post(¢z):{(on,xs3D22+2sxs4z+2Dy:z)D(x:1D%szs%Dz+§sySZ+2)),(0ff ,1SXS3DZ+§SySZ+2DZZSXS4Z)}



Some related 1ssues

] Monitors

[ safety requirements cannot always be specified by state
assertions

L sometimes it is convenient to build a separate
automaton, called a monitor

O it enters an unsafe state precisely when the original system
violates a requirement

O it observes the original system without changing its behavior

O reachability analysis is then performed on the parallel
composition of the system with the monitor



Monitors and Parallel
Composition
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Some related issues (cont.)

 Parametric analysis

1 High level system often use design parameters
1 symbolic constants with unknown fixed values

] parameters are not assigned values until the
Implementation phase of design

1 goal

1 to determine necessary and sufficient
constraints on the parameters under which
safety violations cannot occur
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Examples

A gas burner

Trajectories of a billiard ball

Temperature of a reactor core

Fischer’s timing based mutual exclusion protocol
Train-gate controller

Corbett’s distributed control system
Audio-control protocol
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Gate Automaton
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Controller automaton
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Mutual Exclusion Protocol




Mutual Exclusion Protocol

Pl: x2b Ok #1




Corbett’s Distributed Controller
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Corbett’s Distributed Controller
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Corbett’s Distributed Controller
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