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What is Hytech?

� A model checker for Hybrid systems
� A tool for automated analysis of embedded 

systems
� Procedure for checking linear CTL 

requirements of linear hybrid automata has 
been implemented in tool Hytech
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Examples of Hybrid systems

� manufacturing controllers
� automotive and flight controllers
� medical equipment
� micro-electromechanical systems
� robots
� mission critical applications 



Hybrid Automaton

� A hybrid automaton A = (X, V, flow, inv, init, E, jump,Σ, syn)
� Variables
� Control Modes
� Flow conditions
� Invariant conditions
� Initial conditions
� Control switches
� Jump Conditions
� Events



Thermostat automaton
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Flow and jumps
� states

� the state (on,1.5) is admissible while the state (on, .5) is not
� jumps

� thermostat automaton has two jumps ((on,3), (off,3)) and 
((off,1),(on,1))

� flows
� ((off,3),(off,2)) and ((off,3), (off,2.5)) are flows of thermostat 

automaton
� trajectories

� a finite sequence of admissible states
� first state is an initial state and each pair of consecutive states in 

the sequence is either a jump or flow
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Safety requirements

� what is a safety requirement?
� it asserts that nothing bad will happen
� often specified by describing the “unsafe” values

� A satisfies the safety requirement  specified by unsafe if the 
state assertion unsafe is false for all reachable states of A
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Thermostat automaton augmented for safety verification



Computing reachable states

� Given  a state assertion unsafe we try to compute another 
state assertion reach which is true for reachable states of 
the automaton
� for a  state assertion ϕ, Post(ϕ) is a state assertion that is true for the jump 

and flow successors of the ϕ-states

� Success of computation of reach depends on
� Post(ϕ) can be calculated reasonably efficiently for a restricted class of 

hybrid automata called linear hybrid automata
� Iterative computation of reach must converge within a finite number of 

Post applications and this can be guaranteed for certain restricted class of 
linear hybrid automata such as class of timed automata  



Linear Hybrid Automata

� hybrid automaton A is linear hybrid automaton if it 
satisfies
� Linearity : for every control mode, the flow condition, the 

invariant condition, and the initial condition are convex linear
predicates and for every control switch jump condition is a convex 
linear predicate

� flow independence : for every control mode, the flow condition is 
a predicate over the variables in       only and not in        
� quite limiting but it allows 

� clocks
� stopwatches 
� clocks with bounded drift

xD x



Linear Hybrid Automata

� Theorem:
�If A is a linear hybrid automaton and ϕ is a linear state 

assertion for A, then Post(ϕ) can be computed and the 
result again is again a linear state assertion for A
� every flow curve can be replaced by a straight line between 

the two endpoints 

� This theorem enables
� automatic analysis
� safety verification
� temporal model checking
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Non-linear to linear hybrid 
automata

� Clock Translation
� Linear phase-portrait approximation 



Clock translation
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Linear phase-portrait approx.
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Safety Verification
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Property to be verified:
The heater is active for less than 2/3 of the first hour of operation

Unsafe state:
3/260 yzy ≥∧=



Safety verification
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Safety verification
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Some related issues

� Monitors
� safety requirements cannot always be specified by state 

assertions
� sometimes it is convenient to build a separate 

automaton, called a monitor
� it enters an unsafe state precisely when the original system 

violates a requirement
� it observes the original system without changing its behavior
� reachability analysis is then performed on the parallel 

composition of the system with the monitor



Monitors and Parallel 
Composition
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Some related issues (cont.)

� Parametric analysis
� High level system often use design parameters

� symbolic constants with unknown fixed values
� parameters are not assigned values until the 

implementation phase of design 

� goal
� to determine necessary and sufficient 

constraints on the parameters under which 
safety violations cannot occur 
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Examples 

� A gas burner
� Trajectories of a billiard ball
� Temperature of a reactor core
� Fischer’s timing based mutual exclusion protocol
� Train-gate controller
� Corbett’s distributed control system
� Audio-control protocol



Train automaton
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Gate Automaton
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Controller automaton

1=
≤

t
t

owerabout to l

D

α

0:=t
app

0=t
idle
D

1=
≤

t
t

aiseabout to r

D

α

0:=t
exit

0:=t
exit

0:=t
app

lower raise



Mutual Exclusion Protocol

repeat 
repeat

await k = 0 ;k = c; delay b
until k = c;
Critical section
k := 0;

forever



Mutual Exclusion Protocol
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Corbett’s Distributed Controller
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Corbett’s Distributed Controller
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Corbett’s Distributed Controller
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