
Presenting:

Some Synchronization Issues When
Designing Embedded Systems from

Components
by

Albert Benveniste

The Bay Team
Yanmei Li, Alessandro Pinto, Bruno Sinopoli

Focus

n This paper looks at issues of synchrony,
asynchrony and synchronization that arise in
the design of embedded systems

n Three areas of interest:
n Hybrid control systems
n Synchronous hardware design from IP’s
n Building software or hardware architectures

composed of components that interact
asynchronously

The issue in continuous time control
systems

yd(t)
Physical system

y(t)

d(t)

Open loop system

u(t)

Closed loop system

Physical system
yd(t) y(t)

d(t)

Analog Control
systemΣ

-

e(t)

Issues:

•Approximation in space: modeling errors, noisy measurements,
unknown disturbance

•Approximation in time: delay from sensing to actuating

Gain, phase margins are design metrics provide
robustness with respect to those approximations

The issue in continuous time control
systems

u(t)

Closed loop system

Physical system
yd(t) y(t)

d(t)

Digital Control
systemΣ

-

e(t)

Digital control systems makes approximation in time worse due to sampling,
A/D, D/A conversions

Bounds on maximum sampling will preserve
performance, making the synchronous model still valid

The issue in continuous time control
systems

What about hybrid systems?

q1 q2

Time approximation errors can determine quite different
behaviors

Why this difference?

n Continuity ensures robustness to time jitters

n A hybrid system, by introducing discreteness,
i.e. discontinuity, is inherently susceptible to
lack of synchrony in its components. Small
errors in state estimation can trigger an
undesired change of discrete mode, making
behavior highly unpredictable

Synchronous Hardware Design from IP’s

n Retiming
n Transformations
n Latency Insensitive Design
n Models
n Basic idea and two problems

Retiming
n Use data-flow graph G to model synchronous

hardware:
n vertices figure variables
n branches figure dependencies

n u v : vk uses uk for its computation
n u v : vk uses uk-n for its computation
n index n : weight of the branch

n weight of a path in the graph is the sum of the
weights of its successive branches

n We consider only well formed graphs(every
circuit has a strictly positive weight)

n

Transformations

n GOAL: To find modifications of G that
will not change its semantics

n Two primitive transformations:
n Moving latches around
n Upsampling

Transformations-1
Moving Latches Around:
n ui v => ui v
n v wj => v wj

n pick m latches from each ingoing branch of v,
and move them to each outgoing branch of it

n this transformation does not change the
map:(ui , i = 1,…,p) (wj , j = 1,…,q)

n ∀i=1,…,p: ni-m 0 and ∀j=1,…,q: nj+m 0

n It is a semantic preserving transformation

ni ni-m

nj+mnj

≥ ≥

Transformations-2
Upsampling:
n Pick an integer J > 1
n Set vm

’:= if m = kJ then vk else
n means non_informative, not belonging to any

useful domain,it represents a don’t care

n Ignoring in v’generates v
n If we perform this globally using the same

integer J at all vertices, we preserve the
semantics

τ

τ

τ

Latency Insensitive Design
n At early stages of the design,both IP’s and

the system can be regarded as completely
synchronous, i.e., just as a set of modules
that communicate by means of channels
having “zero-delay”

n At later stages of the design where real
clocks are used, it adjusts automatically to
any interconnect-delay,on-line

Models-1:strictly synchronous

n A state x assigns an effective value to each
variable v V

n A strictly synchronous behavior is a
sequence s = x1,x2,…of states

n A strictly synchronous process is a set of
strictly synchronous behaviors

n A strictly synchronous signal is the
sequence of values sv=v(x1),v(x2),… , for v V
given

∈

∈

Models-2: synchronous
n This model is the same as in the previous case, but

every domain of data is enlarged with some non-
informative value()

n A state x assigns an informative or non-informative
value to each variable v V

n A synchronous behavior is a sequence of states
n A synchronous process is a set of synchronous

behaviors
n A synchronous signal is the sequence of

informative or non-informative values sv =
v(x1),v(x2),…, for v V given

∈

∈

τ

Basic Idea

n We wish to implement a strictly
synchronous specification P by means
of a synchronous process Pl, insensitive
to latency. Then Pl replaces P and will
be used as an IP block

Problem-1
How to model that a synchronous
process Pl implements a strictly
synchronous specification P, while
being insensitive to latency?

n Values of variables travel on wires of the
design,and this causes latency.Such latency
may differ for different variables (since
different wires are used)

Problem-1 Solution
n For v V , pick some signal

sv = v(x1), v(x2), v(x3), … P
n To reflect a wire-dependent latency, the same signal,

observed later on along a wire, has (for example) the
form
sv

l= , v(x1), , v(x2), , , v(x3), …
n can be inserted at arbitrary places of the original

signal sv . This is the mechanism of stalling a signal
n Map Xv : sv

l sv giving the strict version of a stalled
signal

∈
∈

τ
τ

τττ

Problem-1 Solution(cont.)
n Patient process P :

For all s P, all input signal si of s, and all instant k, there
exists another behavior stall (s) P, whose i-signal coincides with
si before instant k, has a t -event at k, and can be further stalled
after k

n Buffer:
n A single buffer is any process which has two variables vi ,vo ,

and has the identity process svo := svi as corresponding strict
process

n A buffer is the parallel composition of finite single buffers
involving disjoint sets of variables

∈
∈

Problem-1 Solution(cont.)
n Theorem. If Pl and Ql are patient processes,and

B,B’are two buffers,then
XV (Pl || B || Ql)=XV (Pl || B’|| Ql)=P || Q
n Pl and Ql are two processes having disjoint sets of variables,

communicating through a buffer
n P,Q are the strict processes corresponding to Pl and Ql

n XV (Pl) represents the strict process corresponding to Pl

n Implies that inserting a buffer does not change the
corresponding strict process

Problem-2 and Solution
For a strict process P , how to build a
patient process Pl such that XV (Pl)= P?

n Enlarge G with additional branches:
(environment) u

n where u V i (input variables)

n mv : the weight of each variable v of G
n Moving of latches is encoded by the set of

weights mV

∈

Problem-2 Solution(cont.)
n ∀ v V ,set initial value for mV

mv := 0
n The original data structure to model the

circuit is (G, 0)
n (G, mv) is updated on-line at each

reaction according to a update protocol

∈

Problem-2 Solution(cont.)

Update Protocol:
n Case 1(trivial): All inputs of G receive

informative values for the first round.
Then the reaction proceeds as specified
by G directly,and the circuit waits for a
second set of input values

n Case 2: At least one input wire offers a
non-informative value for the first
reaction

τ

Problem-2 Solution(cont.)
n Case 2: Assume non-informative value occurs

exactly for one single u V i
n model the reception of a noninformative value on

input wire u via the insertion of a negative delay in
the corresponding input branch of G :
update G: [u] => [u]

n (u) represents the set of the variables v V, there
exists a path from u to v having zero weight. update
the set of weights mV :

∀ v (u) : mv := mv - 1
∀ v (u) : mv := mv

0 -1

∈

∈
∉

∈

τ

Problem-2 Solution(cont.)
n Use retiming rules for mv=-1 at v (u) :

n assuming the availability of one latch at the output
wires belonging to (u)

n moving these latches backward until a variable not
belonging to (u) is reached

n Compensate the negative delay in front of u by
a positive one, therefore making the whole
synchronization correct

∈

Problem-2 Solution(cont.)

n Generalized protocol:
n update G :

su(x)= : [u]=>[u]
n update mV :

∀v (U) : mv := mv –1
∀v (U) : mv := mv

where (U) = u:Su(x)= u

n n-1

∈

∉

τ

τ

τ

τ τ∪

Latency Insensitive Design
n Take a design based on the assumption that

computation in one functional block and
communication among blocks take no time
(synchronous hypothesis)
n i.e. the processes corresponding to the functional blocks

and their composition are strict
n Replace it with a design where communication does

take time and, as a result, signals are delayed, but
not changing the sequence of informative events
n i.e. replace with a set of patient processes

From Synch to GALS

A B

C

Synchronous Specification

CPU

ASIC

BUS

GALS Architecture

Synchronous Model
n Processes = Sequence of reactions (R is a set

of possible reactions)

n Parallel composition = Pairwise conjunction of
reactions (whenever composable)

?RP =

ω)(|| 2121 RRPP ∧=
S1

S2

s3

Reaction

Asynchronous Model
n Signals are Totally Ordered sequences of

informative events
n Behaviors are tuple of signals
n Processes are set of behaviors
n Composition is obtained by unifying common

signals

n The communication is modeled by
unbounded FIFOs

aaa
a

a PPPP 2121 || ∩=

X={x0,x1,...}

Y={y1,y2,...}

O={o1,o2,...}

Synch vs Asynch
n In Synchronous models

n “Reaction based”
n Absence (⊥) can be sensed and used in the

specification of behaviors
n A global tick exists

n In Asynchronous models
n “Signal based”
n No global tick
n Reaction cannot be observed anymore
n ⊥ cannot be sensed

What are the Problems?

n “What if a synchronous block receives its data
form an asynchronous environment ?”

n “What if we deploy a synchronous network of
synchronous blocks onto a GALS
architecture?”

Synch block in Asynch
environment

n Input to the synchronous block are not
“correct”
n The Environment provides sequence of

totally ordered informative events
n The Process can sense absence and use it

within a state

Synch Block

Asynch Environment

Desynchronization
n V set of state variables of P
n A state is a valuation of all (⊥ included)
n behavior pf P (sequence of

states)
n valuation of variable v at state x
n

n By removing all ⊥ from we obtain

Vv ∈
...,, 210 xxx=σ

)(xv

VvvVvVvVv xvxvxv ∈∈∈∈ ==)(...))((,))((,))((110 σσ

vσ aσ

Endochronicity

n define
desynchronization of P
n This map is unique but not invertible

aσσ a aPP a

“If P satisfies a special condition called
endochrony, then there exists a
unique such that holds”

aa P∈∀σ
P∈σ aσσ a

Endochronicity: Properties

n Can be done on-line
n Can be model checked
n Given P, a wrapper W can be found

such that P||W is endochronous

Solution to Problem 1

EP a
a ||

aσσ a σσ aa

Endochrony

n “What if a synchronous block receives its data
form an asynchronous environment ?”

SOLVED
SOLVED

Network of blocks

n We use the desynchronized version of
P, Q

aa
a QP ||

P Q

aσσ a σσ aa

FIFOs

aP aQ

Isochronicity
n In general

n WE want the equality to hold (no spurious behavior
due to asynchronous communication)

)||()||(a
a

aa QPQP ⊆

“If (P,Q) satisfies a special condition called
isochrony then the equality indeed holds”

Isochronicity: Properties

n It is compositional
n It can be model checked
n For any pair (P,Q) there exists (Wp,Wq)

making (P||Wp,Q||Wq) an isochronous
pair

Isochronicity: Intuition
n For composition we use

n In particular common variables are both present
or absent

n Weakly Synchronicity
n A given variable can be present in one component

and absent in the other

n Isonchronous pair (P,Q):

)(21 RR ∧

)(21 RR a∧

)()(2121 RRRR a∧=∧

Methodology

n Synchronous Network

n A-Each is endochronous

n B- form an isochronous
network

kPPPP ...|||||| 321

kP

}...,,{ 321 kPPPP

Methodology (cont’d)

n Isochronicity guarantees that

n Endochronicity guarantees that there
exists

n For each block the original synchronous
semantics is preserved

a
k

a
ka

a
a

a PPPPPP)...||||(...|||| 2121 =

σσ aa

Solution to Problem 2
n “What if we deploy a synchronous network of

synchronous blocks onto a GALS architecture?”

P QW
e

W
i

W
e

W
i

SOLVED
SOLVED

Conclusion
n General concern: build a correct by

construction methodology for modular
architecture

n Similarities
n Stallable processes ≈ stuttering invariant
n Equalizer ≈

n Differences
n No global clock != global clock
n Single clock != Milticlock (at the spec. level!)

σσ aa

