Embedded Software Engineering

3 Unit Course, Spring 2002 EECS Department, UC Berkeley

Chapter 2: RT Scheduling

Christoph Kirsch

www.eecs.berkeley.edu/~fresco/giotto/course-2002

Platform Time is Platform Memory

A Task T_i

Preemption

Worst-Case Execution Time: $WCET(T_i)$

© 2002 C. Kirsch -5-

Relative Deadline D_i

Some Vocabulary for a Task T_i

- *Lateness*: $L_i = f_i d_i$ is the delay of T_i 's completion with respect to its deadline; negative L_i mean early completion
- *Laxity* (*Slack time*): $X_i = D_i C_i$ is the maximum time T_i can be delayed on its start to complete within its deadline

Triggering a Task T_i

- *Periodically*: A *periodic task* T_i is a task with a-priori known release times regularly activated at a constant rate P_i
 - The first release time r_i is called the *phase* ϕ_I
 - The release time of the *n*-th instance is given by $r_i + (n-1) P_i$
 - P_i is called the *period* of T_i
- Sporadically: A sporadic task T_i is a task with a minimum (*interarrival*) time between any two release times
- Aperiodically: An aperiodic task T_i is a task without any constraints on the release times

Definition: Schedule

- A schedule for a set T of tasks and a set S of shared resources is a function that maps a shared resource s ∈ S for any given (discrete) time instant to a possibly empty subset of T (Non-Determinism)
- A *feasible* schedule is a schedule in which each task can complete within its deadline

Schedulability Test vs. Scheduling Algorithm

- A *schedulability test* determines the existence of a feasible schedule for a given set of tasks and shared resources
- A schedulability test can be an *exact*, *sufficient*, or *necessary* condition for the existence of a feasible schedule
- A scheduling algorithm computes a (possibly infeasible) schedule
- A scheduling algorithm is called *optimal* with respect to a *cost function* if it minimizes that cost function
- A scheduling algorithm is called *optimal* with respect to *feasibility* if it always computes a feasible schedule provided that schedule exists

Earliest Due Date (EDD)

- The schedulability test for the *earliest due date* algorithm holds for a given set of *n* tasks, if:
 - $\forall i \in \{1, \dots, n\}$. $f_i \leq d_i$ where $f_i = \sum_{k=1}^i C_k$
- The test is *exact*
- The *earliest due date* algorithm executes all tasks in a given set of *n* tasks in the order of non-decreasing deadlines

EDD Example

	T_1	T_2	T ₃	T_4	T_5
C _i	1	1	1	3	2
d _i	3	10	7	8	5

© 2002 C. Kirsch -12-

Assume, then Guarantee

- *Resource* assumptions:
 - single processor
 - no administrative overhead
- *Task* assumptions:
 - independent, i.e., no precedence constraints
 - release times are equal for all tasks
 - WCET $(T_i) = C_i$ given
 - absolute deadlines given
- *Optimality* guarantee:
 - EDD is optimal wrt. feasibility
 - EDD is optimal wrt. maximum lateness

Proof

• *Interchange argument*: In a non-EDD schedule $\exists T_1, T_2$ with $d_1 \leq d_2$ but T_2 executes before T_1

- Exchanging does not increase maximum lateness
- There are only finitely many transpositions

Earliest Deadline First (EDF)

- The schedulability test for the *earliest deadline first* algorithm holds for a given set of *n* tasks, if:
 - At any instant *t* where a task is released $\forall i \in \{1, ..., n\}$. $f_i \leq d_i$ where $f_i = \sum_{k=1}^{i} c_k(t)$ and $c_k(t)$ is the remaining WCET of T_i at *t*
- The test is *exact*
- The *earliest deadline first* algorithm executes at any instant, given a set of *n* tasks, the task with the earliest deadline: dynamic priority assignment algorithm

EDF Example

© 2002 C. Kirsch -16-

Assume, then Guarantee for EDF

- *Resource* assumptions:
 - single processor
 - no administrative overhead
- *Task* assumptions:
 - preemptive
 - independent, i.e., no precedence constraints
 - release times given
 - WCET $(T_i) = C_i$ given
 - relative deadlines given
- *Optimality* guarantee:
 - EDF is optimal wrt. feasibility
 - EDF is optimal wrt. maximum lateness

Proof for EDF

- Based on the interchange argument for EDD:
 - Exchange time slices instead of tasks because of possible preemptions

Rate Monotonic Analysis (RMA)

- The schedulability test for the *rate monotonic scheduling* algorithm holds for a given set of *n* tasks, if:
 - $\sum_{i=1}^{n} C_i / P_i < n * (2^{1/n} 1)$
- The test is a utilization-based schedulability test
- The test is only *sufficient*
- The *rate monotonic scheduling* algorithm assigns a fixed priority to each task in a set of *n* tasks proportional to the task's frequency: fixed-priority assignment algorithm

RMA Example

© 2002 C. Kirsch -20-

Assume, then Guarantee for RMA

- *Resource* assumptions:
 - single processor
 - no administrative overhead
- *Task* assumptions:
 - preemptive
 - independent, i.e., no precedence constraints
 - periodic
 - WCET $(T_i) = C_i$ given
 - deadlines equal to periods
- *Optimality* guarantee:
 - RMA is optimal wrt. *fixed-priority* feasibility

Utilization-Based Schedulability Tests

- EDF:
 - $\sum_{i=1}^{n} C_i / P_i \leq 1$

• exact, but cannot be extended to more complex task models

• RMA:

•
$$\sum_{i=1}^{n} C_i / P_i < n * (2^{1/n} - 1)$$

• sufficient but not necessary (for non-harmonic task sets)

RMA: 84% Utilization (Test: < 82.8%)

© 2002 C. Kirsch -23-

RMA: 89% Utilization

RMA: 95% Utilization

© 2002 C. Kirsch -25-

RMA: 89% Utilization

RMA: 95% Utilization

© 2002 C. Kirsch -27-

EDF: 100% Utilization

RMA: The Critical Instant

© 2002 C. Kirsch -29-

EDF: Response Times

© 2002 C. Kirsch -30-

Response Time Analysis

- *Response time*: $R_i = f_i r_i$ is the time it takes T_i to complete
- The *critical instant* of a task T is the time instant at which a release of T produces the largest response time
- *Response time analysis* is done in two stages:
 - Compute the worst-case response times for all tasks T_i : $R_i = C_i - I_i$ where I_i is the maximum interference T_i can experience in any time interval $[t, t + R_i)$
 - Check if the worst-case response times are shorter than the deadlines

Response Time Analysis

- Maximum interference occurs when all higher-priority tasks are released at the same time as T_i
- Number_of_releases = $\lceil R_i / P_j \rceil$ where T_j is a higher-priority task than T_i
- *Maximum_interference* = $\lceil R_i / P_j \rceil * C_j$
- $I_i = \sum_{j \in \text{hp}(i)} \lceil R_i / P_j \rceil * C_j$ where hp(*i*) is the set of higher-priority tasks than T_i
- Fixed-point computation: $R_i = C_i + \sum_{j \in \text{hp}(i)} \lceil R_i / P_j \rceil * C_j$

Busy Period

- Compute recurrence relation: $w_i^{n+1} = C_i + \sum_{j \in \text{hp}(i)} \lceil w_i^n / P_j \rceil * C_j$
- Solution is found when $w_i^{n+1} = w_i^n$
- From the time a task T_i is released until T_i completes the processor is said to execute (continuously) a p_i-busy period where p_i is the priority of T_i
- Time window starts with $w_i^{\ l} = C_i + \sum_{j \in hp(i)} C_j$ and may have to be pushed out further