Embedded Software Engineering

3 Unit Course, Spring 2002
EECS Department, UC Berkeley

Chapter 2: RT Scheduling

Christoph Kirsch

www.eecs.berkeley.edu/~fresco/giotto/course-2002

Platform Time Is Platform Memory

i NG NN

e Programming as if there is enough platform time

 Implementation checks whether there is enough of it

—>

© 2002 C. Kirsch -2-

A Task T,

i NG NN

A — & >
Release time r; Computatlon Deadline d,
time C,
\ AN —
Start time s, Finishing time f;
Al A >

© 2002 C. Kirsch -3-

Preemption

I i y Y Y | —>
Deadline d;

Computation
time in RT

\ A A

Release time r;

)

Start time s, Finishing time f;

Y I —p

Y

© 2002 C. Kirsch -4-

Worst-Case Execution Time: WCET(T;)

i NG NN

 a— Y - —
Release time r; WCET(T)) I Deadline d;
\ AN —— I
Start time s, Finishing time f;
Y A A 4 >

© 2002 C. Kirsch -5-

Relative Deadline D,

i NG NG N

: ! | | | >
Release time r- Relative Deadline Absolute
| D;=d;-r, Deadline d,
v—— A ——
>

© 2002 C. Kirsch -6-

Some Vocabulary for a Task T,

 Lateness: L, = f; — d Is the delay of T,’s completion with respect
to its deadline; negative L; mean early completion

e Laxity (Slack time): X; = D; — C, is the maximum time T, can
be delayed on its start to complete within its deadline

© 2002 C. Kirsch -7-

Triggering a Task T,

 Periodically: A periodic task T; Is a task with a-priori known
release times regularly activated at a constant rate P,
 The first release time r; is called the phase @
* The release time of the n-th instance is given by
ri+(n-1)P
 P.is called the period of T,

« Sporadically: A sporadic task T; Is a task with a minimum
(interarrival) time between any two release times

 Aperiodically: An aperiodic task T; is a task without any
constraints on the release times

© 2002 C. Kirsch -8-

Definition: Schedule

o A schedule for a set T of tasks and a set S of shared resources
IS a function that maps a shared resource s [1 S
for any given (discrete) time instant to
a possibly empty subset of T (Non-Determinism)

o A feasible schedule is a schedule in which each task can
complete within its deadline

© 2002 C. Kirsch -9-

Schedulability Test vs. Scheduling Algorithm

A schedulability test determines the existence of a feasible
schedule for a given set of tasks and shared resources

A schedulability test can be an exact, sufficient, or necessary
condition for the existence of a feasible schedule

A scheduling algorithm computes a (possibly infeasible) schedule

A scheduling algorithm is called optimal with respect to
a cost function If it minimizes that cost function

A scheduling algorithm is called optimal with respect to
feasibility if it always computes a feasible schedule
provided that schedule exists

© 2002 C. Kirsch -10-

Earliest Due Date (EDD)

e The schedulability test for the earliest due date algorithm
holds for a given set of n tasks, if:

cOi0{1,...n}.f.<dwheref=2_ C,

e The test Is exact

» The earliest due date algorithm executes all tasks
In a given set of n tasks in the order of non-decreasing deadlines

© 2002 C. Kirsch -11-

EDD Example

T T, T4 Ty Te
111132
311078 |5
Processors
R d, d: d, d, d,
I I
P1 T1 T5 T3 T4 Tz
: — —t >
10 Time

© 2002 C. Kirsch -12-

Assume, then Guarantee

e Resource assumptions:
e single processor
* N0 administrative overhead

e Task assumptions:
e independent, I.e., no precedence constraints
* release times are equal for all tasks
« WCET(T;) = C; given
» absolute deadlines given

e Optimality guarantee:
« EDD is optimal wrt. feasibility
« EDD is optimal wrt. maximum lateness

© 2002 C. Kirsch -13-

Proof

e Interchange argument:
In @ non-EDD schedule (0T, T, with d, < d,
but T, executes before T,

> Any algorithm: L., =f, —d,
! v v
1:2 1:1
T T
1 — 1 EDD algorithm
+ | | A 4 A 4 | —>
LT I d d

e Exchanging does not increase maximum lateness
» There are only finitely many transpositions

© 2002 C. Kirsch -14-

Earliest Deadline First (EDF)

* The schedulability test for the earliest deadline first algorithm
holds for a given set of n tasks, if:
* At any instant t where a task Is released
0i O {1,...,n}. f, < d;where f, = 2., ¢, (t) and
C, (t) Is the remaining WCET of T;at t

e The test Is exact

* The earliest deadline first algorithm executes at any instant,
given a set of n tasks, the task with the earliest deadline:
dynamic priority assignment algorithm

© 2002 C. Kirsch -15-

EDF Example

Tasks A .17, T. T, T.
N a |0(0|2|3]6
| th ... Cill112|2(2]|2

\| Ts | di|2|5]4]10]9
.. iha
T T, T, l
T
\ S| ’

10 Time

© 2002 C. Kirsch -16-

Assume, then Guarantee for EDF

e Resource assumptions:
e single processor
* N0 administrative overhead

e Task assumptions:
* preemptive
e independent, i.e., no precedence constraints
* release times given
« WCET(T;) = C; given
e relative deadlines given

« Optimality guarantee:
« EDF is optimal wrt. feasibility
* EDF is optimal wrt. maximum lateness

© 2002 C. Kirsch -17-

Proof for EDF

 Based on the interchange argument for EDD:
« Exchange time slices instead of tasks
because of possible preemptions

© 2002 C. Kirsch -18-

Rate Monotonic Analysis (RMA)

e The schedulability test for the rate monotonic scheduling
algorithm holds for a given set of n tasks, if:

« X C./P,<n*(2Un-1)

* The test Is a utilization-based schedulability test
* The test is only sufficient

* The rate monotonic scheduling algorithm assigns a fixed
priority to each task in a set of n tasks proportional to the
task’s frequency: fixed-priority assignment algorithm

© 2002 C. Kirsch -19-

RMA Example

Tasks |

Tl T2
Cl21
p: | 5|10

© 2002 C. Kirsch -20-

Assume, then Guarantee for RMA

e Resource assumptions:
e single processor
* N0 administrative overhead

e Task assumptions:
* preemptive
e independent, i.e., no precedence constraints
e periodic
« WCET(T;) = C; given
o deadlines equal to periods

« Optimality guarantee:
 RMA is optimal wrt. fixed-priority feasibility

© 2002 C. Kirsch -21-

Utilization-Based Schedulability Tests

 EDF:

> _ClIP <1
e exact, but cannot be extended to more complex task models

* RMA:

« X C./P,<n*(2Un-1)
o sufficient but not necessary (for non-harmonic task sets)

© 2002 C. Kirsch -22-

RMA: 84% Utilization (Test: < 82.8%)

Teskst
\ By N e

b\ T, "\ T, r/ T l’/
A — | — | >

6 9 12 18

© 2002 C. Kirsch -23-

RMA: 89% Utilization

Tasks |

© 2002 C. Kirsch -24-

RMA: 95% Utilization

T,(T,
Ci|1]|7
pi| 69
askst
T T »\v T T \/
"\ 2 2 2 2 .dle
\ 1r/ \ 1r/ : \ 17/ >
6 9 12 18

© 2002 C. Kirsch -25-

RMA: 89% Utilization

Tasks |

000:00:0@ 00000000,

© 2002 C. Kirsch -26-

RMA: 95% Utilization

T, T,

Cii5|1

pi| 69

Tasks |

T T
\ 2l \ Y dlé
T T T

\ : r/\ : :1: l/ : ’/ >
6 9 12 18

© 2002 C. Kirsch -27-

EDF: 100% Utilization

Tasks |

.......................................

.......................................

.......................................

Tl T2
Cl4|3
pi| 69

© 2002 C. Kirsch -28-

RMA: The Critical Instant

© 2002 C. Kirsch -29-

EDF: Response Times

T,|T,
Ci|5]|3
pi| 69
Taksff™ N
\ Ly
T T
\ - l/ 1 >
6 9 12 18

© 2002 C. Kirsch -30-

Response Time Analysis

* Response time: R, = f; —r; Is the time It takes T, to complete

* The critical instant of a task T is the time instant at which
a release of T produces the largest response time

* Response time analysis Is done in two stages:
» Compute the worst-case response times for all tasks T:
R, = C; — I; where |; Is the maximum interference T, can
experience in any time interval [t, t + R))
* Check If the worst-case response times are shorter
than the deadlines

© 2002 C. Kirsch -31-

Response Time Analysis

Maximum interference occurs when all higher-priority tasks
are released at the same time as T,

Number_of_releases =[R;/ P, |
where T; Is a higher-priority task than T,

Maximum_interference =[R;/ P, | * C,

o 1= 200 Ri/P1*C

where hp(i) Is the set of higher-priority tasks than T

Fixed-point computation: R, = C; + ijhp(i)rRi/ Pﬂ * G

© 2002 C. Kirsch -32-

Busy Period

» Compute recurrence relation: w1 = C;+ 2, [wn/ P, 1* C,

o Solution is found when w,"*1 = w.n

e From the time a task T, Is released until T; completes
the processor Is said to execute (continuously)
a p;—busy period where p; is the priority of T,

- Time window starts with w;* = C; + 2. C; and
may have to be pushed out further

© 2002 C. Kirsch -33-

