
3 Unit Course, Spring 2002
EECS Department, UC Berkeley

Chapter 2: RT Scheduling

Embedded Software Engineering

www.eecs.berkeley.edu/~fresco/giotto/course-2002

Christoph Kirsch

© 2002 C. Kirsch -2-

Environment

Software

• Programming as if there is enough platform time

• Implementation checks whether there is enough of it

Platform Time is Platform Memory

© 2002 C. Kirsch -3-

Environment

Software

Release time ri Deadline di

Finishing time fiStart time si

A Task Ti

Computation
time Ci

© 2002 C. Kirsch -4-

Environment

Software

Preemption

Release time ri Deadline di

Finishing time fiStart time si

Computation
time in RT

© 2002 C. Kirsch -5-

Environment

Software

Release time ri Deadline di

Start time si

Worst-Case Execution Time: WCET(Ti)

Finishing time fi

WCET(Ti)

© 2002 C. Kirsch -6-

Environment

Software

Release time ri
Absolute
Deadline di

Relative Deadline Di

Relative Deadline
Di = di – ri

© 2002 C. Kirsch -7-

Some Vocabulary for a Task Ti

• Lateness: Li = fi – di is the delay of Ti’s completion with respect
to its deadline; negative Li mean early completion

• Laxity (Slack time): Xi = Di – Ci is the maximum time Ti can
be delayed on its start to complete within its deadline

© 2002 C. Kirsch -8-

Triggering a Task Ti

• Periodically: A periodic task Ti is a task with a-priori known
release times regularly activated at a constant rate Pi

• The first release time ri is called the phase φI
• The release time of the n-th instance is given by

ri + (n – 1) Pi
• Pi is called the period of Ti

• Sporadically: A sporadic task Ti is a task with a minimum
(interarrival) time between any two release times

• Aperiodically: An aperiodic task Ti is a task without any
constraints on the release times

© 2002 C. Kirsch -9-

Definition: Schedule

• A schedule for a set T of tasks and a set S of shared resources
is a function that maps a shared resource s ∈ S
for any given (discrete) time instant to
a possibly empty subset of T (Non-Determinism)

• A feasible schedule is a schedule in which each task can
complete within its deadline

© 2002 C. Kirsch -10-

Schedulability Test vs. Scheduling Algorithm

• A schedulability test determines the existence of a feasible
schedule for a given set of tasks and shared resources

• A schedulability test can be an exact, sufficient, or necessary
condition for the existence of a feasible schedule

• A scheduling algorithm computes a (possibly infeasible) schedule

• A scheduling algorithm is called optimal with respect to
a cost function if it minimizes that cost function

• A scheduling algorithm is called optimal with respect to
feasibility if it always computes a feasible schedule
provided that schedule exists

© 2002 C. Kirsch -11-

Earliest Due Date (EDD)

• The schedulability test for the earliest due date algorithm
holds for a given set of n tasks, if:

• ∀ i ∈ {1,…,n}. fi ≤ di where fi = Σi
k=1 Ck

• The test is exact

• The earliest due date algorithm executes all tasks
in a given set of n tasks in the order of non-decreasing deadlines

© 2002 C. Kirsch -12-

EDD Example

Time

Processors

P1 T1 T5

10

587103di

23111Ci

T5T4T3T2T1

T3 T4 T2

d1 d5 d3 d4 d2

Buttazzo97

© 2002 C. Kirsch -13-

Assume, then Guarantee

• Resource assumptions:
• single processor
• no administrative overhead

• Task assumptions:
• independent, i.e., no precedence constraints
• release times are equal for all tasks
• WCET(Ti) = Ci given
• absolute deadlines given

• Optimality guarantee:
• EDD is optimal wrt. feasibility
• EDD is optimal wrt. maximum lateness

© 2002 C. Kirsch -14-

Proof

• Interchange argument:
In a non-EDD schedule ∃ T1, T2 with d1 ≤ d2
but T2 executes before T1

Any algorithm: Lmax = f1 – d1

EDD algorithm

T1T2

T1 T2

• Exchanging does not increase maximum lateness
• There are only finitely many transpositions

d1 d2f’1 f’2

f2 f1

© 2002 C. Kirsch -15-

Earliest Deadline First (EDF)

• The schedulability test for the earliest deadline first algorithm
holds for a given set of n tasks, if:

• At any instant t where a task is released
∀ i ∈ {1,…,n}. fi ≤ di where fi = Σi

k=1 ck (t) and
ck (t) is the remaining WCET of Ti at t

• The test is exact

• The earliest deadline first algorithm executes at any instant,
given a set of n tasks, the task with the earliest deadline:
dynamic priority assignment algorithm

© 2002 C. Kirsch -16-

Time

Tasks
T1

T5

10

63200ai

910452di

22221Ci

T5T4T3T2T1

T3

T4

T2 T2

T4

Buttazzo97

EDF Example

© 2002 C. Kirsch -17-

Assume, then Guarantee for EDF

• Resource assumptions:
• single processor
• no administrative overhead

• Task assumptions:
• preemptive
• independent, i.e., no precedence constraints
• release times given
• WCET(Ti) = Ci given
• relative deadlines given

• Optimality guarantee:
• EDF is optimal wrt. feasibility
• EDF is optimal wrt. maximum lateness

© 2002 C. Kirsch -18-

Proof for EDF

• Based on the interchange argument for EDD:
• Exchange time slices instead of tasks

because of possible preemptions

© 2002 C. Kirsch -19-

Rate Monotonic Analysis (RMA)

• The schedulability test for the rate monotonic scheduling
algorithm holds for a given set of n tasks, if:

• Σn
i=1 Ci / Pi < n * (21/n - 1)

• The test is a utilization-based schedulability test
• The test is only sufficient

• The rate monotonic scheduling algorithm assigns a fixed
priority to each task in a set of n tasks proportional to the
task’s frequency: fixed-priority assignment algorithm

© 2002 C. Kirsch -20-

RMA Example

Time

Tasks

T1

10

105pi

12Ci

T2T1

T2 T2

T1 T1 T1

© 2002 C. Kirsch -21-

Assume, then Guarantee for RMA

• Resource assumptions:
• single processor
• no administrative overhead

• Task assumptions:
• preemptive
• independent, i.e., no precedence constraints
• periodic
• WCET(Ti) = Ci given
• deadlines equal to periods

• Optimality guarantee:
• RMA is optimal wrt. fixed-priority feasibility

© 2002 C. Kirsch -22-

Utilization-Based Schedulability Tests

• EDF:
• Σn

i=1 Ci / Pi ≤ 1
• exact, but cannot be extended to more complex task models

• RMA:
• Σn

i=1 Ci / Pi < n * (21/n - 1)
• sufficient but not necessary (for non-harmonic task sets)

© 2002 C. Kirsch -23-

RMA: 84% Utilization (Test: < 82.8%)

Tasks

T1

9

96pi

33Ci

T2T1

T2 T2

T1T1

6 12 18

Idle

© 2002 C. Kirsch -24-

RMA: 89% Utilization

Tasks

T1

9

96pi

52Ci

T2T1

T2 T2

T1T1

6 12 18

Idle
T2 T2

© 2002 C. Kirsch -25-

RMA: 95% Utilization

Tasks

T1

9

96pi

71Ci

T2T1

T2 T2

T1T1

6 12 18

Idle
T2 T2

© 2002 C. Kirsch -26-

RMA: 89% Utilization

Tasks

T1

9

96pi

24Ci

T2T1

T2 T2

T1T1

6 12 18

Idle

© 2002 C. Kirsch -27-

RMA: 95% Utilization

Tasks

T1

9

96pi

15Ci

T2T1

T2 T2

T1T1

6 12 18

Idle

© 2002 C. Kirsch -28-

EDF: 100% Utilization

Tasks

T1

9

96pi

34Ci

T2T1

T2 T2

T1T1

6 12 18

T2

© 2002 C. Kirsch -29-

RMA: The Critical Instant

Tasks

T1

9

96pi

15Ci

T2T1

T2 T2

T1T1

6 12 18

Idle

© 2002 C. Kirsch -30-

EDF: Response Times

Tasks

T1

9

96pi

35Ci

T2T1

T2

T1

6 12 18

© 2002 C. Kirsch -31-

Response Time Analysis

• Response time: Ri = fi – ri is the time it takes Ti to complete

• The critical instant of a task T is the time instant at which
a release of T produces the largest response time

• Response time analysis is done in two stages:
• Compute the worst-case response times for all tasks Ti:

Ri = Ci – Ii where Ii is the maximum interference Ti can
experience in any time interval [t, t + Ri)

• Check if the worst-case response times are shorter
than the deadlines

© 2002 C. Kirsch -32-

Response Time Analysis

• Maximum interference occurs when all higher-priority tasks
are released at the same time as Ti

• Number_of_releases = Ri / Pj
where Tj is a higher-priority task than Ti

• Maximum_interference = Ri / Pj * Cj

• Ii = Σj∈ hp(i) Ri / Pj * Cj
where hp(i) is the set of higher-priority tasks than Ti

• Fixed-point computation: Ri = Ci + Σj∈ hp(i) Ri / Pj * Cj

© 2002 C. Kirsch -33-

Busy Period

• Compute recurrence relation: wi
n+1 = Ci + Σj∈ hp(i) wi

n / Pj * Cj

• Solution is found when wi
n+1 = wi

n

• From the time a task Ti is released until Ti completes
the processor is said to execute (continuously)
a pi–busy period where pi is the priority of Ti

• Time window starts with wi
1 = Ci + Σj∈ hp(i) Cj and

may have to be pushed out further

