
3 Unit Course, Spring 2002
EECS Department, UC Berkeley

Chapter 3: RT Communication

Embedded Software Engineering

www.eecs.berkeley.edu/~fresco/giotto/course-2002

Christoph Kirsch

© 2002 C. Kirsch -2-

Network

Message1

Message2

Real-Time Communication

© 2002 C. Kirsch -3-

Environment

Software

Software Processes

Environment Processes

Embedded Software

© 2002 C. Kirsch -4-

Environment

Software

• Programming as if there is enough platform time

• Implementation checks whether there is enough of it

Platform Time is Platform Memory

© 2002 C. Kirsch -5-

Environment

Software

Send time ri Deadline di

Finishing time fiStart time si

A Message Mi

Latency Ci

© 2002 C. Kirsch -6-

Environment

Software

Preemption

Send time ri Deadline di

Finishing time fiStart time si

Latency in RT

© 2002 C. Kirsch -7-

Environment

Software

Send time ri Deadline di

Start time si

Worst-Case Latency: WCL(Mi)

Finishing time fi

WCL(Mi)

© 2002 C. Kirsch -8-

Environment

Software

Send time ri
Absolute
Deadline di

Relative Deadline Di

Relative Deadline
Di = di – ri

© 2002 C. Kirsch -9-

Triggering a Message Mi

• Periodically: A periodic message Mi is a message with a-priori
known send times regularly activated at a constant rate Pi

• The first send time ri is called the phase φI
• The send time of the n-th instance is given by

ri + (n – 1) Pi
• Pi is called the period of Mi

• Sporadically: A sporadic message Mi is a message with
a minimum (interarrival) time between any two send times

• Aperiodically: An aperiodic message Mi is a message without
any constraints on the send times

© 2002 C. Kirsch -10-

Explicit Flow Control

Network

Message1

Message2

• Send time not known a priori
• Sender can detect errors

© 2002 C. Kirsch -11-

Implicit Flow Control

Network

Message1

Message2

• Send time is known a priori
• Receiver can detect errors

© 2002 C. Kirsch -12-

Explicit Flow Control: Priority

Network

Message1

Message2

Medium-Access Protocols:
• CSMA/CD - LON, Echelon 1990
• CSMA/CA - CAN, Bosch 1990
• FTDMA - Byteflight, BMW 2000
• FTDMA - Flexray, Daimler/BMW 2001

© 2002 C. Kirsch -13-

Control Area Network

M1 M2

Time

Messages

M2

M1

0

0 0

0

11

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

1

0

1

© 2002 C. Kirsch -14-

Implicit Flow Control: Time

Network

Message1

Message2

Medium-Access Protocols:
• TDMA - TTP, Kopetz 1993
• FTDMA - Flexray, Daimler/BMW 2001

© 2002 C. Kirsch -15-

Time-Triggered Protocol

M1 M2

Time

Network

N1 M1 M2

Slot1 Slot2

© 2002 C. Kirsch -16-

Fault Tolerance

• A value fault causes an incorrect (physical or logical) value
to be computed, transmitted, or received

• A timing fault causes a value to be computed, transmitted,
or received at the wrong time (too early, too late, not at all)

• A spatial proximity fault is a fault where all matter in some
specified volume is destroyed

• Definitions from Rushby, EMSOFT 2001

© 2002 C. Kirsch -17-

A Fault Model

• A fault model classifies the effects of faults in order to study
the algorithms for fault tolerance

• A manifest effect of a fault can always be detected reliably:
e.g., a fault that makes a host cease transmitting messages

• A symmetric effect of a fault is any effect that is the same
for all observers: e.g., off-by-1 error

• An arbitrary effect of a fault is unconstrained:
e.g., an asymmetric or Byzantine effect that is perceived
differently by different observers

© 2002 C. Kirsch -18-

Fault Hypotheses and FCUs

• A fault containment unit (FCU) is an independent unit:
faults propagate neither out of an FCU nor
into an FCU (“common mode failure”)

• A fault mode describes the kind of behavior
a faulty FCU may exhibit

• A fault hypothesis describes the FCUs of an architecture
as well as the fault modes to be tolerated and
their maximum number and arrival rate

© 2002 C. Kirsch -19-

Redundancy

• Tolerating arbitrary fault modes does not require to justify
assumptions about more specific fault modes

• Introducing redundancy reduces fault modes (e.g., by fail-silence)

• In general, it requires more redundancy to tolerate an arbitrary
fault than a symmetric fault, which in turn requires more
redundancy than a manifest fault

• E.g., there is a clock synchronization algorithm that tolerates
a arbitrary faults, s symmetric faults, and m manifest faults
that occur simultaneously, provided there are n FCUs with:

n > 3a + 2s + m

© 2002 C. Kirsch -20-

Protocol Services

• Fault-tolerant clock synchronization
• Fault-tolerant message transfer

• Replication requires agreement:
• approximate (Problem: diverging state)
• exact (Problem: interactive consistency/Byzantine agreement)

• Interactive consistency requires:
• Agreement: All non-faulty receivers obtain the same message
• Validity: If the transmitter is non-faulty, then

non-faulty receivers obtain the message actually sent

© 2002 C. Kirsch -21-

Membership Service

• Interactive consistency can be implemented by
a membership service that must satisfy:

• Agreement: The membership lists of all non-faulty nodes
are the same

• Validity: The membership lists of all non-faulty nodes
contain all non-faulty nodes and at most one faulty node

• Clique avoidance weakens validity because
non-faulty nodes may be excluded (that can later attempt to rejoin)

© 2002 C. Kirsch -22-

Physical Structure: A Bus

Host Host Host Host Host

Interface Interface Interface Interface Interface

© 2002 C. Kirsch -23-

Physical Structure: A Star

Host Host Host Host Host

Interface Interface Interface Interface Interface

Hub

© 2002 C. Kirsch -24-

A Node: Event vs. Time-Triggered

Host Computer
Application Software

Controlled Object Interface (COI)

Communication Network Interface (CNI)

Process I/O Subsystem

Communication Controller (CC)

Data

Messages

NBW!

© 2002 C. Kirsch -25-

The Time Table (TTP: MEDL)

AILDAddress (CNI)Time

3

2

1

0

© 2002 C. Kirsch -26-

TTP: I- and N-Frames

4 0 to 128

CRC

1 16

DataHeader

Start of Frame

N

4 0 to 128

CRC

1 16

C-StateHeader

Start of Frame

I

© 2002 C. Kirsch -27-

TTP: C-State in I-Frames

C-State

Time MEDL
Entry

Membership
Vector4

CRC

1 16

Header

Start of Frame

I

© 2002 C. Kirsch -28-

TTP: Sender’s C-State in N-Frames

Time MEDL
Entry

Membership
Vector4

CRC

1 16

DataHeader

N 0 to 128

Sender’s C-State

© 2002 C. Kirsch -29-

TTP: C-State in CRC of N-Frames

Time MEDL
Entry

Membership
Vector4

CRC

1 16

DataHeader

N 0 to 128

Sender’s C-State

4

CRC

1 16

DataHeader

N 0 to 128 Sent N-Frame

© 2002 C. Kirsch -30-

TTP: Receiver’s C-State in N-Frames

Time MEDL
Entry

Membership
Vector4

CRC

1 16

DataHeader

N 0 to 128

Sender’s C-State

Time MEDL
Entry

Membership
Vector4

CRC

1 16

DataHeader

N 0 to 128

Receiver’s C-State

4

CRC

1 16

DataHeader

N 0 to 128 Sent N-Frame

