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Environment

Software

• Programming as if there is enough platform time

• Implementation checks whether there is enough of it

Platform Time is Platform Memory
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Environment

Software

Send time ri Deadline di

Finishing time fiStart time si

A Message Mi

Latency Ci
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Environment

Software

Preemption

Send time ri Deadline di

Finishing time fiStart time si

Latency in RT
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Environment

Software

Send time ri Deadline di

Start time si

Worst-Case Latency: WCL(Mi)

Finishing time fi

WCL(Mi)



© 2002  C. Kirsch   -8-

Environment

Software

Send time ri
Absolute
Deadline di

Relative Deadline Di

Relative Deadline
Di = di – ri
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Triggering a Message Mi

• Periodically: A periodic message Mi is a message with a-priori
known send times regularly activated at a constant rate Pi

• The first send time ri is called the phase φI
• The send time of the n-th instance is given by

ri + (n – 1) Pi 
• Pi is called the period of Mi

• Sporadically: A sporadic message Mi is a message with
a minimum (interarrival) time between any two send times

• Aperiodically: An aperiodic message Mi is a message without
any constraints on the send times
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Explicit Flow Control

Network

Message1

Message2

• Send time not known a priori
• Sender can detect errors
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Implicit Flow Control

Network

Message1

Message2

• Send time is known a priori
• Receiver can detect errors
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Explicit Flow Control: Priority

Network

Message1

Message2

Medium-Access Protocols:
• CSMA/CD - LON, Echelon 1990
• CSMA/CA - CAN, Bosch 1990
• FTDMA - Byteflight, BMW 2000
• FTDMA - Flexray, Daimler/BMW 2001
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Implicit Flow Control: Time

Network

Message1

Message2

Medium-Access Protocols:
• TDMA - TTP, Kopetz 1993
• FTDMA - Flexray, Daimler/BMW 2001
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Time-Triggered Protocol

M1 M2

Time

Network

N1 M1 M2

Slot1 Slot2
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Fault Tolerance

• A value fault causes an incorrect (physical or logical) value
to be computed, transmitted, or received

• A timing fault causes a value to be computed, transmitted,
or received at the wrong time (too early, too late, not at all)

• A spatial proximity fault is a fault where all matter in some
specified volume is destroyed

• Definitions from Rushby, EMSOFT 2001
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A Fault Model

• A fault model classifies the effects of faults in order to study
the algorithms for fault tolerance

• A manifest effect of a fault can always be detected reliably:
e.g., a fault that makes a host cease transmitting messages

• A symmetric effect of a fault is any effect that is the same
for all observers: e.g., off-by-1 error

• An arbitrary effect of a fault is unconstrained:
e.g., an asymmetric or Byzantine effect that is perceived
differently by different observers
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Fault Hypotheses and FCUs

• A fault containment unit (FCU) is an independent unit:
faults propagate neither out of an FCU nor
into an FCU (“common mode failure”)

• A fault mode describes the kind of behavior
a faulty FCU may exhibit

• A fault hypothesis describes the FCUs of an architecture
as well as the fault modes to be tolerated and
their maximum number and arrival rate
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Redundancy

• Tolerating arbitrary fault modes does not require to justify
assumptions about more specific fault modes

• Introducing redundancy reduces fault modes (e.g., by fail-silence)

• In general, it requires more redundancy to tolerate an arbitrary
fault than a symmetric fault, which in turn requires more
redundancy than a manifest fault

• E.g., there is a clock synchronization algorithm that tolerates
a arbitrary faults, s symmetric faults, and m manifest faults
that occur simultaneously, provided there are n FCUs with:

n > 3a + 2s + m
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Protocol Services

• Fault-tolerant clock synchronization
• Fault-tolerant message transfer

• Replication requires agreement:
• approximate (Problem: diverging state)
• exact (Problem: interactive consistency/Byzantine agreement)

• Interactive consistency requires:
• Agreement: All non-faulty receivers obtain the same message
• Validity: If the transmitter is non-faulty, then

non-faulty receivers obtain the message actually sent
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Membership Service

• Interactive consistency can be implemented by
a membership service that must satisfy:

• Agreement: The membership lists of all non-faulty nodes
are the same

• Validity: The membership lists of all non-faulty nodes
contain all non-faulty nodes and at most one faulty node

• Clique avoidance weakens validity because
non-faulty nodes may be excluded (that can later attempt to rejoin)
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Physical Structure: A Bus

Host Host Host Host Host

Interface Interface Interface Interface Interface
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Physical Structure: A Star

Host Host Host Host Host

Interface Interface Interface Interface Interface

Hub
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A Node: Event vs. Time-Triggered

Host Computer
Application Software

Controlled Object Interface (COI)

Communication Network Interface (CNI)

Process I/O Subsystem

Communication Controller (CC)

Data

Messages

NBW!
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The Time Table (TTP: MEDL)
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TTP: I- and N-Frames
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TTP: C-State in I-Frames
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TTP: Sender’s C-State in N-Frames

Time MEDL
Entry

Membership
Vector4

CRC

1 16

DataHeader

N 0 to 128

Sender’s C-State



© 2002  C. Kirsch   -29-

TTP: C-State in CRC of N-Frames
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TTP: Receiver’s C-State in N-Frames
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