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Real-Time Communication
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Platform Time Is Platform Memory
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e Programming as if there is enough platform time

 Implementation checks whether there is enough of it
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A Message M.
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Preemption
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Worst-Case Latency: WCL(M;)
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Relative Deadline D,
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Triggering a Message M.

 Periodically: A periodic message M, Is a message with a-priori
known send times regularly activated at a constant rate P,
 The first send time r; is called the phase ¢
* The send time of the n-th instance iIs given by
rn+(n-1)P,
 P.is called the period of M,

 Sporadically: A sporadic message M. is a message with
a minimum (interarrival) time between any two send times

 Aperiodically: An aperiodic message M; Is a message without
any constraints on the send times
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Explicit Flow Control

Messagel

 Send time not known a priori
e Sender can detect errors
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Implicit Flow Control

Messagel

 Send time i1s known a priori
» Recelver can detect errors
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Explicit Flow Control: Priority
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Medium-Access Protocols:

« CSMA/CD - LON, Echelon 1990

« CSMA/CA - CAN, Bosch 1990
 FTDMA - Byteflight, BMW 2000

« FTDMA - Flexray, Daimler/BMW 2001
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Control Area Network

Messages

..................................................

..................................................

© 2002 C. Kirsch -13-



Implicit Flow Control: Time

Medium-Access Protocols:
« TDMA - TTP, Kopetz 1993
« FTDMA - Flexray, Daimler/BMW 2001
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Time-Triggered Protocol
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Fault Tolerance

A value fault causes an incorrect (physical or logical) value
to be computed, transmitted, or received

A timing fault causes a value to be computed, transmitted,
or received at the wrong time (too early, too late, not at all)

A spatial proximity fault is a fault where all matter in some
specified volume is destroyed

e Definitions from Rushby, EMSOFT 2001
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A Fault Model

o A fault model classifies the effects of faults in order to study
the algorithms for fault tolerance

« A manifest effect of a fault can always be detected reliably:
e.g., a fault that makes a host cease transmitting messages

« A symmetric effect of a fault is any effect that is the same
for all observers: e.g., off-by-1 error

« An arbitrary effect of a fault is unconstrained:

e.g., an asymmetric or Byzantine effect that Is perceived
differently by different observers
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Fault Hypotheses and FCUs

o A fault containment unit (FCU) is an independent unit:
faults propagate neither out of an FCU nor
Into an FCU (*common mode failure”)

e A fault mode describes the kind of behavior
a faulty FCU may exhibit

o A fault hypothesis describes the FCUs of an architecture

as well as the fault modes to be tolerated and
their maximum number and arrival rate
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Redundancy

 Tolerating arbitrary fault modes does not require to justify
assumptions about more specific fault modes

e Introducing redundancy reduces fault modes (e.g., by fail-silence)

* In general, it requires more redundancy to tolerate an arbitrary
fault than a symmetric fault, which in turn requires more
redundancy than a manifest fault

e E.g., there is a clock synchronization algorithm that tolerates
a arbitrary faults, s symmetric faults, and m manifest faults
that occur simultaneously, provided there are n FCUs with:

n>3a+2s+m
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Protocol Services

Fault-tolerant clock synchronization
Fault-tolerant message transfer

Replication requires agreement:
e approximate (Problem: diverging state)
o exact (Problem: interactive consistency/Byzantine agreement)

Interactive consistency requires:
« Agreement: All non-faulty receivers obtain the same message
o VValidity: If the transmitter is non-faulty, then
non-faulty receivers obtain the message actually sent
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Membership Service

* Interactive consistency can be implemented by
a membership service that must satisfy:
« Agreement: The membership lists of all non-faulty nodes
are the same
o VValidity: The membership lists of all non-faulty nodes
contain all non-faulty nodes and at most one faulty node

 Clique avoidance weakens validity because
non-faulty nodes may be excluded (that can later attempt to rejoin)
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Physical Structure: A Bus
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Physical Structure: A Star
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A Node: Event vs. Time-Triggered
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The Time Table (TTP: MEDL)
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TTP: I- and N-Frames
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TTP: C-State In I-Frames
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TTP: Sender’s C-State i1n N-Frames
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TTP: C-State in CRC of N-Frames
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TTP: Recelver’s C-State in N-Frames
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