
Computational Systems
Engineering

Christoph Kirsch
University of Salzburg

3 Unit Graduate Course, Winter 2004/2005
Chapter 4: Socket Programming

 (see also Stevens, Fenner, Rudoff: UNIX Network Programming, Volume 1)

© C. Kirsch 2004 2

History

• Berkeley Sockets API originated from the
4.2 BSD system in 1983

• Few API changes in 1990

• All networking code, kernel support and
applications (FTP, telnet), independent of
Unix license requirements

• Linux sockets have been implemented from
scratch

© C. Kirsch 2004 3

Berkeley Sockets

• The Berkeley Sockets API comprises a
library for developing applications that
access a computer network

• A Berkeley Socket is an endpoint for
communication

• We distinguish server and client sockets

• Sockets are identified by file descriptors
(which are integer values)

© C. Kirsch 2004 4

Server and Client API

• socket(): create a socket

• read(): read from a socket

• write(): write to a socket

• close(): close a socket

© C. Kirsch 2004 5

Client API

• connect(): connects a socket to a
remote socket identified by an IP address
and a port

© C. Kirsch 2004 6

Server API

• bind(): bind a socket to a port

• listen(): converts a socket to a server
socket

• accept(): connects a server socket to a
remote socket that tries to connect()
to the server socket

© C. Kirsch 2004 7

Web Server
• socket = socket();

bind(socket, myserver.com:80);
listen(socket);

while (true) {
 connection = accept(socket);

 request = read(connection);

 file = parse(request);

 page = read(file);

 write(page, connection);

 close(connection);
}

© C. Kirsch 2004 8

I/O Models

• Blocking I/O

• Nonblocking I/O

• I/O Multiplexing

• Signal-driven I/O

• Asynchronous I/O

© C. Kirsch 2004 9

Example: Input

• Wait for data to be ready

• Copy ready data from kernel to user space

© C. Kirsch 2004 10

Blocking I/O

• Default!

• recvfrom() blocks in the kernel until
data is ready and has been copied to user
space

© C. Kirsch 2004 11

Nonblocking I/O

• Do not put process to sleep but return an
error instead if data is not ready

• recvfrom() blocks in the kernel until
data has been copied to user space if data
is ready

© C. Kirsch 2004 12

I/O Multiplexing

• Use two system calls, one to wait for data
and one to copy data

• select() blocks in the kernel until data
is ready (can wait for more than one
descriptor)

• recvfrom() blocks in the kernel until
data is ready and has been copied to user
space

© C. Kirsch 2004 13

Signal-Driven I/O

• Get notified by a signal when data is ready

• sigaction() installs a signal handler
that is invoked when data is ready

• recvfrom() blocks in the kernel until
data is ready and has been copied to user
space

© C. Kirsch 2004 14

Asynchronous I/O

• Get notified by a signal when data is ready
and has been copied to user space

• aio_read() returns immediately. We
get notified that the operation is complete,
e.g., by a signal

• Signal-driven I/O tells us when an I/O
operation can be initiated, asynchronous I/O
tells us when an I/O operation is complete

© C. Kirsch 2004 15

Synchronous vs.
Asynchronous I/O

• Synchronous I/O causes the requesting
process to be blocked until the I/O
operation is complete

• Asynchronous I/O does not cause the
requesting process to be blocked

• Blocking, nonblocking, I/O multiplexing, and
signal-driven I/O are synchronous I/O

© C. Kirsch 2004 16

Appointments

• Calendars: Partial or total ordering?

• Clocks: Real time or CPU time?

© C. Kirsch 2004 17

Jobs

• System Administration: Peter

• Website: Harald

• Benchmarking: Max

• Webserver development: Claudiu

• Library development: Claudiu

