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Organization

® Web: www.cs.uni-salzburg.at/~ck/
teaching/CSE-Winter-2004

® Mailing list:
cst-winter-2004@cs.uni-salzburg.at

® Administration:
Petra.Kirchweger@cs.uni-salzburg.at

® Science:
Christoph.Kirsch@cs.uni-salzburg.at
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Assignments

® Paper readings: not more than once a
week one paper, short 3-4 bullet
summary due before next lecture

® Home work: occasional

® Project: form teams of 2-3 students,
pick subject, design and implement,

write project summary, and present at
the end of the semester
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Fun

® Shopping: search, compare, propose
which hardware to buy

® Install OS and development tools

® Create user accounts, CVS repository,
home page (sourceforge!?)

® Read and understand GPL
(summary due before next lecture)
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Environment vs. System

Environment
Interaction

Computational System
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Humans

® Humans interact
with the physical
world

® Humans interact
with other humans

® A human is a
computational
system
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Interaction and System

Input Output

Computational System
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Model and Abstraction

Abstraction

Model
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Behavior
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Interactive System

Environment
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Desktop Computer



Stimulus
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Reactive System
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Concurrency
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Process Structure
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Process Behavior

Environment
1 2 3 4 5 6 Z 8 9
:

Computational System

10

19



Stimulus
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System Structures

Environment

T observes
Reactor
preempts > releases
Process
preempts > dispatches
Scheduler
l utilizes
Resources
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Blocked Process
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Released Process
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Running Process
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State Transitions
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Reactor/Scheduler
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Transitions Revisited

Reactor
releases
hlocked
Nrocess

Running process
blocks/exits

Reactor/Scheduler
preempts running
process

Scheduler
runs
released
process
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Cooperation
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Preemption
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Cooperative Example

Environment

0 2 4 6 8 10

Computational System

© C. Kirsch 2004

33



-h...-h._.--\-...--\...-'i--""_'_:_i':_-‘__..r'

!

L =
s
-
™.
O
e
O
N
-
Z

I‘q ‘. -'- -

v v
LN

700¢ Y2511 1D O




Completion Event: Chaining

Environment
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Preemptive Cooperation

Environment
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. Buffer
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Reactor vs. Scheduler

® Reactor-based: queue events and
release at most one process (ex: event-
driven state machine)

® Scheduler-based: release more than
one process but run processes until
completion (ex: state threads)
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Why Full Preemption?
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Locking

Environment

| ocked Resource
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Lock Synchronization

® Thread A attempts to acquire lock

® A gets the lock (uncontended case)

® Lock is owned by thread B (contended
case)

® A is blocked and waits until lock is
available
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Phases
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Phase |

A blocks
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Still Phase |

A is released again
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Synchronization
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Preemption Rendezvous
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Preemption

A is preempted
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Still Preemption

B is released
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Inversion
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Rendezvous
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Rendezvous A
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Preemptive Yet Atomic Access
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Event-Driven Model

® Event queue

® Event handler table

® Callbacks (event handlers)

® Share memory on heap

® Manual stack management

® Cooperative (but could be preemptive)

® No synchronization required
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Unrolling the Stack
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Threads

® Procedures + stack + shared heap

® Process - own heap: lightweight process
® Share memory on heap

® Automatic stack management

® Preemptive (but could be cooperative)
® Requires synchronization

® Deadlock, Race Conditions
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Deadlock
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Context Switch

1. Interrupt or yield

. Save stack

. Do something (reactor)

. Do something (scheduler)

. Restore stack

S G &~ W DN

. Switch
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setymp/longymp

® int setjmp (jmp buf env)
saves context In env

e

® int longjmp(jmp buf env, int wval)
restores context from env previously saved by
set jmp
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Example

#include<setjmp.h>

main() {
jmp buf env;
int 1i;

i=setjmp(env);
printf("i= %d\n",1i);
if(i==0)
printf("I am in if ..\n");
else {
printf("I am in else too...\n");

exit(0);

}
longjmp(env,2);
printf("Grrr... why am i not getting printed\n");

}
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