Computational Systems
Engineering

Christoph Kirsch
University of Salzburg

3 Unit Graduate Course, Winter 2004/2005
Chapter 1: Introduction

Organization

® Web: www.cs.uni-salzburg.at/~ck/
teaching/CSE-Winter-2004

® Mailing list:
cst-winter-2004@cs.uni-salzburg.at

® Administration:
Petra.Kirchweger@cs.uni-salzburg.at

® Science:
Christoph.Kirsch@cs.uni-salzburg.at

© C. Kirsch 2004

Assignments

® Paper readings: not more than once a
week one paper, short 3-4 bullet
summary due before next lecture

® Home work: occasional

® Project: form teams of 2-3 students,
pick subject, design and implement,

write project summary, and present at
the end of the semester

© C. Kirsch 2004

Fun

® Shopping: search, compare, propose
which hardware to buy

® Install OS and development tools

® Create user accounts, CVS repository,
home page (sourceforge!?)

® Read and understand GPL
(summary due before next lecture)

© C. Kirsch 2004

Environment vs. System

Environment
Interaction

Computational System

© C. Kirsch 2004

Humans

® Humans interact
with the physical
world

® Humans interact
with other humans

® A human is a
computational
system

© C. Kirsch 2004

Interaction and System

Input Output

Computational System

© C. Kirsch 2004

Model and Abstraction

Abstraction

Model

© C. Kirsch 2004

© C. Kirsch 2004

Behavior

Computational System

2N

State

Speed
/\/\ /\/\

Computational System

/_/
i
-y <€ "

State

© C. Kirsch 2004

10

Interactive System

Environment

Reaction

Stimulus

Computational System

© C. Kirsch 2004

10

=

Desktop Computer

Stimulus

© C. Kirsch 2004

Reactive System

Environment

Computational System

Reaction

13

e B

M R &

I:-_‘

o

".——'_- i
e T e

""|.I'1'|'J' 4

Control Computer

© C. Kirsch 2004

Concurrency

Environment

Input Output
Memory Process A Memory
Input Output
Memory Process B Memory

5
|
i
k
i

7
!
i
|

P C— —

© C. Kirsch 2004

Process Structure

Input
Driver

e

Input
Memory

/"

=

<

State

’

Process
Function

R . I

Output
Driver

Output
Memory

=

State

18 |
e —}

© C. Kirsch 2004

Process Behavior

Environment
1 2 3 4 5 6 Z 8 9
:

Computational System

10

19

Stimulus

© C. Kirsch 2004

Control

Environment

Reaction

Computational System

10

20

System Structures

Environment

T observes
Reactor
preempts > releases
Process
preempts > dispatches
Scheduler
l utilizes
Resources

© C. Kirsch 2004

24

© C. Kirsch 2004

Blocked Process

27

© C. Kirsch 2004

Released Process

25

© C. Kirsch 2004

Running Process

24

Bl il

State Transitions

-"--I":II:.F
EAESEE
"")“:
L 1"‘!
“}oup
'y = '-.-*.‘.}""
- . ".l":_..}
e i | Pl
1= 3]
] M i
W “‘ :‘.I-
¥

— / Reactor
_ > Scheduler

Process

© C. Kirsch 2004

25

© C. Kirsch 2004

Reactor

09
O
D
@)
O
o
AL
T,
D
N
Qo]
|
D
i
0
Cur
)
i

Scheduler

700¢ Y2511 1D O

Process

N
U
X
b
T
@9
Al
O
e
Al

700¢ Y2511 1D O

© C. Kirsch 2004

Reactor/Scheduler

£

Transitions Revisited

Reactor
releases
hlocked
Nrocess

Running process
blocks/exits

Reactor/Scheduler
preempts running
process

Scheduler
runs
released
process

© C. Kirsch 2004 30

© C. Kirsch 2004

Cooperation

Environment

5

Computational System

10

31

© C. Kirsch 2004

Preemption

Environment

2

4

Computational System

10

32

Cooperative Example

Environment

0 2 4 6 8 10

Computational System

© C. Kirsch 2004

33

-h...-h._.--\-...--\...-'i--""_'_:_i':_-‘__..r'

!

L =
s
-
™.
O
e
O
N
-
Z

I‘q ‘. -'- -

v v
LN

700¢ Y2511 1D O

Completion Event: Chaining

Environment

A A2 A3

0 72 4 6 3 10

Computational System

© C. Kirsch 2004

35

INg

-

Cha

700¢ Y2511 1D O

Preemptive Cooperation

Environment
A
. Buffer
O 2 4 §) 8 10
: =

Computational System

© C. Kirsch 2004

37

Reactor vs. Scheduler

® Reactor-based: queue events and
release at most one process (ex: event-
driven state machine)

® Scheduler-based: release more than
one process but run processes until
completion (ex: state threads)

© C. Kirsch 2004

38

Why Full Preemption?

Environment
A
§ :Reaction
B | ;
6 2 4 6 8 10
- :

Computational System

© C. Kirsch 2004

39

© C. Kirsch 2004

Locking

Environment

| ocked Resource

Computational System

10

40

Lock Synchronization

® Thread A attempts to acquire lock

® A gets the lock (uncontended case)

® Lock is owned by thread B (contended
case)

® A is blocked and waits until lock is
available

© C. Kirsch 2004 41

© C. Kirsch 2004

Phases

Environment
1 1]
@ @
2 4 6 3

Computational System

10

42

© C. Kirsch 2004

Phase |

A blocks

© C. Kirsch 2004

Still Phase |

A is released again

il still Phase |

St

QLY
)
AL
o
)
(L
D)
N
o
LG
O
Al
<

700¢ Y2511 1D O

© C. Kirsch 2004

Phase I

Synchronization

Environment

Preemption Rendezvous
@ O
= Inversion
O O
2 4 6 8
v

Computational System

© C. Kirsch 2004

10

© C. Kirsch 2004

Preemption

A is preempted

© C. Kirsch 2004

Still Preemption

B is released

, Still Preemption

St

i
)
D
®,
i |
A
)
N
o
il
@)
Al
an

700¢ Y2511 1D O

© C. Kirsch 2004

Inversion

Environment
® ®
5 Inversion
@ ®
2 4 6 8
z

Computational System

10

51

© C. Kirsch 2004

R e

i

e

© C. Kirsch 2004

R R R R I Sy s am

Rendezvous

Environment

Rendezvous
® ®
@ @
y 4 6 8

Computational System

10

© C. Kirsch 2004

Rendezvous A

© C. Kirsch 2004

Rendezvous B

Preemptive Yet Atomic Access

Environment
A | ® ®
B
O 2 4 6 3 10
v +

Computational System

© C. Kirsch 2004

56

Event-Driven Model

® Event queue

® Event handler table

® Callbacks (event handlers)

® Share memory on heap

® Manual stack management

® Cooperative (but could be preemptive)

® No synchronization required

© C. Kirsch 2004

7

© C. Kirsch 2004

Unrolling the Stack

Environment

A A2 A3

2 4 6 3

Computational System

10

58

Threads

® Procedures + stack + shared heap

® Process - own heap: lightweight process
® Share memory on heap

® Automatic stack management

® Preemptive (but could be cooperative)
® Requires synchronization

® Deadlock, Race Conditions

© C. Kirsch 2004

59

© C. Kirsch 2004

Deadlock

Environment
Lock 1 Lock 2
@ @
O
Lock 2
2 4 6 3
v

Computational System

Deadlock

@
Lock T

10

60

Context Switch

1. Interrupt or yield

. Save stack

. Do something (reactor)

. Do something (scheduler)

. Restore stack

S G &~ W DN

. Switch

© C. Kirsch 2004

61

setymp/longymp

® int setjmp (jmp buf env)
saves context In env

e

® int longjmp(jmp buf env, int wval)
restores context from env previously saved by
set jmp

© C. Kirsch 2004

62

Example

#include<setjmp.h>

main() {
jmp buf env;
int 1i;

i=setjmp(env);
printf("i= %d\n",1i);
if(i==0)
printf("I am in if ..\n");
else {
printf("I am in else too...\n");

exit(0);

}
longjmp(env,2);
printf("Grrr... why am i not getting printed\n");

}

© C. Kirsch 2004

63

