
Computational Systems
Engineering

Christoph Kirsch
University of Salzburg

3 Unit Graduate Course, Winter 2004/2005
Chapter 1: Introduction



2© C. Kirsch 2004

Organization
Web: www.cs.uni-salzburg.at/~ck/
teaching/CSE-Winter-2004

Mailing list:
cst-winter-2004@cs.uni-salzburg.at

Administration: 
Petra.Kirchweger@cs.uni-salzburg.at

Science:
Christoph.Kirsch@cs.uni-salzburg.at



3© C. Kirsch 2004

Assignments
Paper readings: not more than once a 
week one paper, short 3-4 bullet 
summary due before next lecture

Home work: occasional

Project: form teams of 2-3 students, 
pick subject, design and implement, 
write project summary, and present at 
the end of the semester



4© C. Kirsch 2004

Fun

Shopping: search, compare, propose 
which hardware to buy

Install OS and development tools

Create user accounts, CVS repository, 
home page (sourceforge!?)

Read and understand GPL
(summary due before next lecture)



5© C. Kirsch 2004

Environment vs. System

Environment

Computational System

Interaction



6© C. Kirsch 2004

Humans

Humans interact 
with the physical 
world

Humans interact 
with other humans

A human is a 
computational 
system



7© C. Kirsch 2004

Interaction and System

Computational System

Input Output



8© C. Kirsch 2004

Model and Abstraction

Model

Abstraction



9© C. Kirsch 2004

Behavior

Computational System

State



10© C. Kirsch 2004

Speed

Computational System

State



11© C. Kirsch 2004

0 1 2 3 4 5 6 7 8 9 10

Interactive System
St

im
ul

us

Reaction

Environment

Computational System



Desktop Computer



13© C. Kirsch 2004

0 1 2 3 4 5 6 7 8 9 10

Reactive System
St

im
ul

us

R
ea

ct
io

n

Environment

Computational System



Control Computer



15© C. Kirsch 2004

Data

Environment

Computational System

Values



16© C. Kirsch 2004

Memory

Environment

ProcessInput
Memory

Output
Memory



17© C. Kirsch 2004

Concurrency

Environment

Process BInput
Memory

Output
Memory

Process AInput
Memory

Output
Memory



18© C. Kirsch 2004

Process Structure

Input
Memory

Output
Memory

Input
Driver

Output
Driver

Process
FunctionState State



19© C. Kirsch 2004

0 1 2 3 4 5 6 7 8 9 10

Process Behavior

Environment

Computational System

Pr
oc

es
s



20© C. Kirsch 2004

0 1 2 3 4 5 6 7 8 9 10

Control
St

im
ul

us

Environment

Computational System

Reaction



21© C. Kirsch 2004

System Structures
Environment

Reactor

Process

Scheduler

Resources

releases

dispatches

observes

utilizes

preempts

preempts



22© C. Kirsch 2004

Blocked Process



23© C. Kirsch 2004

Released Process



24© C. Kirsch 2004

Running Process



25© C. Kirsch 2004

State Transitions

Reactor

Scheduler

Process



26©
 C

. K
ir

sc
h 

20
04

Reactor

releases blocked process



27©
 C

. K
ir

sc
h 

20
04

Scheduler

runs released process



28©
 C

. K
ir

sc
h 

20
04

Process

blocks/exits



29©
 C

. K
ir

sc
h 

20
04

Reactor/Scheduler

preempt running process



30© C. Kirsch 2004

Transitions Revisited

Reactor
releases
blocked
process

Scheduler
runs
released
process

Running process
blocks/exits

Reactor/Scheduler
preempts running
process



31© C. Kirsch 2004

Cooperation

0 5 10

Environment

Computational System

A

B



32© C. Kirsch 2004

Preemption

0 5 10

Environment

Computational System

A

B



33© C. Kirsch 2004

Cooperative Example

0 2 4 6 8 10

Environment

Computational System

A

B



34©
 C

. K
ir

sc
h 

20
04

No Scheduler!

A

B runsA runs

B



35© C. Kirsch 2004

Completion Event: Chaining

0 2 4 6 8 10

Environment

Computational System

A

B

A1 A2 A3



36©
 C

. K
ir

sc
h 

20
04

Chaining

A2

A2 runs

A1 blocks

A1



37© C. Kirsch 2004

Preemptive Cooperation

0 2 4 6 8 10

Environment

Computational System

A

B
Buffer



38© C. Kirsch 2004

Reactor vs. Scheduler

Reactor-based: queue events and 
release at most one process (ex: event-
driven state machine)

Scheduler-based: release more than 
one process but run processes until 
completion (ex: state threads)



39© C. Kirsch 2004

Why Full Preemption?

0 2 4 6 8 10

Environment

Computational System

A

B
Reaction



40© C. Kirsch 2004

Locking

0 2 4 6 8 10

Environment

Computational System

A

B

Locked Resource



41© C. Kirsch 2004

Lock Synchronization
Thread A attempts to acquire lock

A gets the lock (uncontended case)

Lock is owned by thread B (contended 
case)

A is blocked and waits until lock is 
available



42© C. Kirsch 2004

Phases

0 2 4 6 8 10

Environment

Computational System

A

B

III III



43©
 C

. K
ir

sc
h 

20
04

Phase I

A blocks



44©
 C

. K
ir

sc
h 

20
04

Still Phase I

A is released again



45©
 C

. K
ir

sc
h 

20
04

Still, Still Phase I

A is chosen to run



46©
 C

. K
ir

sc
h 

20
04

Phase II



47© C. Kirsch 2004

Synchronization

0 2 4 6 8 10

Environment

Computational System

A

B

Preemption

Inversion

Rendezvous



48©
 C

. K
ir

sc
h 

20
04

Preemption

A is preempted



49©
 C

. K
ir

sc
h 

20
04

Still Preemption

B is released



50©
 C

. K
ir

sc
h 

20
04

Still, Still Preemption

B is chosen to run



51© C. Kirsch 2004

Inversion

0 2 4 6 8 10

Environment

Computational System

A

B
Inversion



52©
 C

. K
ir

sc
h 

20
04

Inversion

B blocks

B A runs

A



53© C. Kirsch 2004

Rendezvous

0 2 4 6 8 10

Environment

Computational System

A

B

Rendezvous



54©
 C

. K
ir

sc
h 

20
04

Rendezvous A



55©
 C

. K
ir

sc
h 

20
04

Rendezvous B



56© C. Kirsch 2004

Preemptive Yet Atomic Access

0 2 4 6 8 10

Environment

Computational System

A

B



57© C. Kirsch 2004

Event-Driven Model
Event queue

Event handler table

Callbacks (event handlers)

Share memory on heap

Manual stack management

Cooperative (but could be preemptive)

No synchronization required



58© C. Kirsch 2004

Unrolling the Stack

0 2 4 6 8 10

Environment

Computational System

A

B

A1 A2 A3



59© C. Kirsch 2004

Threads
Procedures + stack + shared heap

Process - own heap: lightweight process

Share memory on heap

Automatic stack management

Preemptive (but could be cooperative)

Requires synchronization

Deadlock, Race Conditions



60© C. Kirsch 2004

Deadlock

0 2 4 6 8 10

Environment

Computational System

A

B
Deadlock

Lock 1

Lock 2

Lock 2

Lock 1



61© C. Kirsch 2004

Context Switch

1. Interrupt or yield

2. Save stack

3. Do something (reactor)

4. Do something (scheduler)

5. Restore stack

6. Switch



62© C. Kirsch 2004

setjmp/longjmp

int setjmp (jmp_buf env)
saves context in env

int longjmp(jmp_buf env, int val)
restores context from env previously saved by 
setjmp



63© C. Kirsch 2004

Example
#include<setjmp.h>

main() {
jmp_buf env;
int i;

i=setjmp(env);
printf("i= %d\n",i);
if(i==0)
  printf("I am in if ..\n");
else {
  printf("I am in else too...\n");

  exit(0);
}
longjmp(env,2);
printf("Grrr... why am i not getting printed\n");

}


