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Organization
Web: www.cs.uni-salzburg.at/~ck/
teaching/CSE-Winter-2004

Mailing list:
cst-winter-2004@cs.uni-salzburg.at

Administration: 
Petra.Kirchweger@cs.uni-salzburg.at

Science:
Christoph.Kirsch@cs.uni-salzburg.at
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Assignments
Paper readings: not more than once a 
week one paper, short 3-4 bullet 
summary due before next lecture

Home work: occasional

Project: form teams of 2-3 students, 
pick subject, design and implement, 
write project summary, and present at 
the end of the semester
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Fun

Shopping: search, compare, propose 
which hardware to buy

Install OS and development tools

Create user accounts, CVS repository, 
home page (sourceforge!?)

Read and understand GPL
(summary due before next lecture)
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Environment vs. System

Environment

Computational System

Interaction
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Humans

Humans interact 
with the physical 
world

Humans interact 
with other humans

A human is a 
computational 
system
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Interaction and System

Computational System

Input Output
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Model and Abstraction

Model

Abstraction
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Behavior

Computational System

State
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Speed

Computational System

State
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Concurrency
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Process Structure
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System Structures
Environment

Reactor

Process

Scheduler

Resources

releases

dispatches

observes

utilizes

preempts

preempts
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Blocked Process
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Released Process
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Running Process
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State Transitions

Reactor

Scheduler

Process
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Transitions Revisited

Reactor
releases
blocked
process

Scheduler
runs
released
process

Running process
blocks/exits

Reactor/Scheduler
preempts running
process
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Cooperation
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Preemption
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Cooperative Example
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Completion Event: Chaining
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Preemptive Cooperation
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Reactor vs. Scheduler

Reactor-based: queue events and 
release at most one process (ex: event-
driven state machine)

Scheduler-based: release more than 
one process but run processes until 
completion (ex: state threads)
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Why Full Preemption?
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Locking
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Lock Synchronization
Thread A attempts to acquire lock

A gets the lock (uncontended case)

Lock is owned by thread B (contended 
case)

A is blocked and waits until lock is 
available
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Phases
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Synchronization

0 2 4 6 8 10

Environment

Computational System

A

B

Preemption

Inversion

Rendezvous



48©
 C

. K
ir

sc
h 

20
04

Preemption

A is preempted



49©
 C

. K
ir

sc
h 

20
04

Still Preemption

B is released



50©
 C

. K
ir

sc
h 

20
04

Still, Still Preemption

B is chosen to run



51© C. Kirsch 2004

Inversion
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Rendezvous
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Preemptive Yet Atomic Access
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Event-Driven Model
Event queue

Event handler table

Callbacks (event handlers)

Share memory on heap

Manual stack management

Cooperative (but could be preemptive)

No synchronization required
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Unrolling the Stack

0 2 4 6 8 10

Environment

Computational System

A

B

A1 A2 A3



59© C. Kirsch 2004

Threads
Procedures + stack + shared heap

Process - own heap: lightweight process

Share memory on heap

Automatic stack management

Preemptive (but could be cooperative)

Requires synchronization

Deadlock, Race Conditions
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Deadlock
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Context Switch

1. Interrupt or yield

2. Save stack

3. Do something (reactor)

4. Do something (scheduler)

5. Restore stack

6. Switch
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setjmp/longjmp

int setjmp (jmp_buf env)
saves context in env

int longjmp(jmp_buf env, int val)
restores context from env previously saved by 
setjmp
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Example
#include<setjmp.h>

main() {
jmp_buf env;
int i;

i=setjmp(env);
printf("i= %d\n",i);
if(i==0)
  printf("I am in if ..\n");
else {
  printf("I am in else too...\n");

  exit(0);
}
longjmp(env,2);
printf("Grrr... why am i not getting printed\n");

}


