
Computational Systems
Engineering

Christoph Kirsch
University of Salzburg

3 Unit Graduate Course, Winter 2004/2005
Chapter 4: Benchmarking

© C. Kirsch 2004 2

Heisenberg

• Uncertainty Relation:

The more precisely the position is
determined, the less precisely the
momentum is known in this
instant, and vice versa.

• Uncertainty Principle

© C. Kirsch 2004 3

Throughput
• the rate at which a system processes

objects end-to-end

• unit: objects/unit of time

• example: bits/sec, cars/day, people/year

• it is not speed, which is distance/unit of
time

• good for absolute performance

• bad for perceived performance

© C. Kirsch 2004 4

Latency

• the time a system needs to process an
object end-to-end

• unit: unit of time

• example: milliseconds

• again, it is not speed

• jumbo vs. supersonic, truck vs. fiber

• throughput and latency are opposed goals

© C. Kirsch 2004 5

It’s the Latency, Stupid

• Stuart Cheshire, May 1996

• Making more throughput is easy

• Get 10 phone lines instead of one

• Making less latency is not

• It is better to have a small share of a high-
throughput, low-latency line than to have all
of a low-throughput, high-latency line

© C. Kirsch 2004 6

Stanford - MIT, 1996
• The distance from Stanford to Boston is 4320km.

• The speed of light in vacuum is 300 x 10^6 m/s.

• The speed of light in fibre is roughly 66% of the speed of light in vacuum.

• The speed of light in fibre is 300 x 10^6 m/s * 0.66 = 200 x 10^6 m/s.

• The one-way delay to Boston is 4320 km / 200 x 10^6 m/s = 21.6ms.

• The round-trip time to Boston and back is 43.2ms.

• The current ping time from Stanford to Boston over today's Internet is about 85ms:
[cheshire@nitro]$ ping -c 1 lcs.mit.edu
PING lcs.mit.edu (18.26.0.36): 56 data bytes
64 bytes from 18.26.0.36: icmp_seq=0 ttl=238 time=84.5 ms

• So: the hardware of the Internet can currently achieve within a factor of two of the speed
of light.

© C. Kirsch 2004 7

Salzburg - Berkeley, 2004

• Wahine: ck$ traceroute www.eecs.berkeley.edu
traceroute to web1.eecs.berkeley.edu (169.229.60.94), 30 hops max, 40 byte packets
 1 10.0.0.254 (10.0.0.254) 24.201 ms 3.239 ms 3.303 ms
 2 81-223-189-113.itzling.xdsl-line.inode.at (81.223.189.113) 157.561 ms 13.088 ms 31.037 ms
 3 voe2-vl-00-010.voesend.vien.inode.at (62.99.170.221) 18.832 ms 21.808 ms 80.836 ms
 4 vie2-vl-00-020.shuttle.vien.inode.at (62.99.170.205) 33.394 ms 23.258 ms 16.192 ms
 5 otta-gb-03-002.shuttle.vien.inode.at (62.99.170.17) 17.28 ms 26.757 ms *
 6 ff-m-po-02-001.frankfm.germ.inode.de (62.99.170.106) 155.312 ms 32.134 ms 32.479 ms
 7 po1-0.core01.fra03.atlas.cogentco.com (80.81.192.63) 75.607 ms 42.227 ms 34.975 ms
 8 p12-0.core01.dca01.atlas.cogentco.com (154.54.1.17) 131.743 ms 125.974 ms 119.981 ms
 9 p15-0.core01.dca01.atlas.cogentco.com (66.28.4.21) 130.403 ms * 127.108 ms
10 p10-0.core02.sfo01.atlas.cogentco.com (66.28.4.209) 303.818 ms 203.276 ms 201.534 ms
11 cenic.demarc.cogentco.com (38.112.6.226) 193.605 ms 208.736 ms 206.211 ms
12 inet-ucb--lax-isp.cenic.net (137.164.24.142) 304.41 ms 264.708 ms 190.957 ms
13 vlan194.inr-202-doecev.berkeley.edu (128.32.0.251) 194.394 ms 196.212 ms 234.06 ms
14 doecev-soda-br-6-4.eecs.berkeley.edu (128.32.255.170) 192.544 ms 214.33 ms 194.122 ms
15 sbd2a.eecs.berkeley.edu (169.229.59.226) 203.337 ms 437.41 ms 427.557 ms
16 web1.eecs.berkeley.edu (169.229.60.94) 354.457 ms 197.736 ms 210.725 ms

© C. Kirsch 2004 8

Thrashing
• a condition in which a computational

system spends more time administrating
resources than utilizing resources

• little or no progress of application
functionality

• typically patterns of requests for resources
followed by inadequate access emerge

• examples: virtual memory page faults,
network collisions

© C. Kirsch 2004 9

What to Benchmark?
• throughput: bits/seconds

• latency: milliseconds

• error rate: %

• maximum number of connections

• thrashing

• system time: disk, network, reactor,
scheduler

• user time: parser, error handler, generator

© C. Kirsch 2004 10

How to Benchmark

• Hardware: server plus multiple client
machines plus network switch

• Software: httperf, apachebench, autobench

• Problems: bottlenecks (network, clients)

• Solution: vary network/client capacity

• Check out: SPECweb99

© C. Kirsch 2004 11

Static Benchmarking

• request the same file many times

• simple but not real world (caching)

• tool: httperf

• httperf --server host.mydomain.com \
 --uri /index.html \
 --num-conn 5000 \
 --num-call 10 \
 --rate 200 \
 --timeout 5

© C. Kirsch 2004 12

Automatic Benchmarking

• request the same file many times at
increasing rates

• tool: autobench

• generates output in CSV/TSV format

© C. Kirsch 2004 13

Dynamic Benchmarking

• request different files many times

• use sequences of requests obtained from web logs

• tool: httperf

• httperf --server host.mydomain.com \
 --wsesslog 1000,2,session.log \
 --max-piped-calls 5 \
 --rate 20 \
 --timeout 5

© C. Kirsch 2004 14

Jobs

• System Administration

• Website

• Benchmarking

• Webserver development

• Library development

