
The Emergence of Networking 
Abstractions and Techniques in TinyOS

Philip Levis, Sam Madden, David Gay, 
Joseph Polastre, Robert Szewczyk,
Alec Woo, Eric Brewer and David Culler



Seminar
Computational Systems

Universit�t
Salzburg

Michael Holzmann

The Emergence of Networking Abstractions and
Techniques in TinyOS



© 2004, M. Holzmann3
Universit�t

SalzburgSeminar Computational Systems

Wireless Sensor Networks



© 2004, M. Holzmann4
Universit�t

SalzburgSeminar Computational Systems

Overview 

What are Sensor Networks
Typical Applications and Application Requirements
TinyOS – an OS for wireless sensor networks
Emergence of Networking Abstractions in TinyOS
- Single-Hop Communication
- Multi-Hop Communication
- Networking Services

Common Design Techniques
Conclusion



© 2004, M. Holzmann5
Universit�t

SalzburgSeminar Computational Systems

Sensor Networks

Networked systems of small embedded computers



© 2004, M. Holzmann6
Universit�t

SalzburgSeminar Computational Systems

Application Examples

Habit/Habitat Monitoring



© 2004, M. Holzmann7
Universit�t

SalzburgSeminar Computational Systems

Shooter Localization

Localize origin of a bullet in urban setting



© 2004, M. Holzmann8
Universit�t

SalzburgSeminar Computational Systems

Pursuer / Evader

Vehicle Tracking



© 2004, M. Holzmann9
Universit�t

SalzburgSeminar Computational Systems

Application requirements

Habitat monitoring
- Low energy consumption 

Shooter localization
- High sampling rate
- Time synchronization of nodes

Pursuer / Evader
- Localization of mobile nodes
- More advanced routing



© 2004, M. Holzmann10
Universit�t

SalzburgSeminar Computational Systems

General EmNet Requirements

Networking issues are at the core of the design of 
EmNets:
Communication dominates energy budget
- Multi-hop communication

Ad-hoc networks
- Mobility
- Deploy large number of nodes without configuration
- -> no static routing infrastructure possible

New approaches to network design are required



© 2004, M. Holzmann11
Universit�t

SalzburgSeminar Computational Systems

TinyOS

Develped at UC Berkeley
Operating System for Sensor Networks
- Limited ressources
- Concurrency intensive operation

Goal
- Allow OS to adapt to hardware diversity
- Still allow applications to reuse common services & 

abstractions



© 2004, M. Holzmann12
Universit�t

SalzburgSeminar Computational Systems

TinyOS operation

Has to handle high concurrency
- Process multiple information flows as opposed to 

heavy computing
- Sensor reading, communication, routing, ...

Interaction with the physical world
- Real-time requirements
- E.g. radio communication, sensing data, ...

Event driven concurrency model
- Tasks (== deferred execution)
- Hardware events (interrupts)



© 2004, M. Holzmann13
Universit�t

SalzburgSeminar Computational Systems

TinyOS modularity 

Based on component model:
Named components
- Provide Application Code
- Implement Interfaces

Interface declares set of functions and event
- commands - downcall vs events - upcall
- Split phase operation (command & event)
- No blocking (reactivity!)
- Blocking sequence as state machine
- Many concurrent operations on single stack (mem!)



© 2004, M. Holzmann14
Universit�t

SalzburgSeminar Computational Systems

Flow of Calls in the Component Graph

Messaging Layer

clocksOther Layers

Routing Layer

Application

Main



© 2004, M. Holzmann15
Universit�t

SalzburgSeminar Computational Systems

Emergence of Abstractions in TinyOS

Examine emerged abstractions and common techniques 
they exploit – substantially different from GPS?
Focus on networking abstractions
Classification into four categories
- General. OS provides mechanism & policy
- Specialized. OS provides only meachnism
- In Flux. Abstraction is part of the application
- Absent.

Abstractions moved among those classes as refined.



© 2004, M. Holzmann16
Universit�t

SalzburgSeminar Computational Systems

Single Hop Communication

Active Messages

- Identifier specifies action to be executed on reception
AM abstraction did not change but the implementation did:
- Due to changing HW platforms
- Radio requires high-frequency low-jitter sampling
- Real time requirements restrict use of tasks
- Simplified by raising the SW/HW boundary



© 2004, M. Holzmann17
Universit�t

SalzburgSeminar Computational Systems

Single Hop Network Stacks



© 2004, M. Holzmann18
Universit�t

SalzburgSeminar Computational Systems

Radio hardware abstractions

Bit level interface
- Bit sequence written to transmit pin
- Receive pin sampled at precise times (timer int)
- High interrupt rate: handler cannot decode/encode
- Decoder task scheduled every byte time:
- No Tasks can run longer than a byte time

Byte-level hardware
- Reduced interrupt rate
- Decode/encoding can be done within the handler
- Increased task length (packet time)



© 2004, M. Holzmann19
Universit�t

SalzburgSeminar Computational Systems

Cost of high-level hardware abstractions

Moving hw/sw boundary changes division of work 
between tasks and hw events
Stack performance improves but disallows capabilities 
enabled by low-level hardware access
Raising the boundary is not without cost: Useful features 
become more complex to provide
- Power management: Low power listening when idle, 

turn off radio between samples.
- Synchronous link-layer acknowledgement: sender / 

receiver swap roles vs ACK packet



© 2004, M. Holzmann20
Universit�t

SalzburgSeminar Computational Systems

Multi-Hop Communication

Ad-hoc multi-hop routing
- Tree-based collection
- Intra-network routing
- Dissemination

Tree-Based Routing
- Forward packet via parents to root of the tree
- Key issue: how to discover and maintain routing tree
- Parent selection algorithms try to:

| Minimize end-to-end packet loss
| Total expected transmissions (including retransmissions)

- Nodes compute quality estimates on incoming links



© 2004, M. Holzmann21
Universit�t

SalzburgSeminar Computational Systems

Multi-Hop Communication II

Intra-Network Routing
- Is uncommon in TinyOS applications
- Route discovery and maintainance similar to IP
- Usually a single route is maintained

Broadcast Protocols
- Reliably disseminate data to every node
- Implementations: Flooding vs Epidemic



© 2004, M. Holzmann22
Universit�t

SalzburgSeminar Computational Systems

Multi-Hop Common Developments

Neighborhood discovery and link quality estimation
- Node adresses, link quality, routing metadata
- Construct routes, adapt to connectivity changes

All Implementations built on top of AM abstraction
- Common Interfaces / Augmentations of AM:
- Send / Intercept IF

| Signals packet reception to application
| Monitored forwarding
| Broadcast with processing at each hop

- Pass non locally adressed packets up
| Link estimation, neighbor table management



© 2004, M. Holzmann23
Universit�t

SalzburgSeminar Computational Systems

Network Services

Abstractions to support efficient, low-power networking
Power Management, Ex. TinyDB



© 2004, M. Holzmann24
Universit�t

SalzburgSeminar Computational Systems

Network Services II

Time Synchronization
- Ex.: Sensor fusion, Slot Coordination, Communication 

Scheduling
- TinyOS provides get/set systemtime and transmit 

hook
- Development of general purpose time synchronization 

was unsuccessful
- Time Synchronization also appears to emerge as a 

specialized abstraction



© 2004, M. Holzmann25
Universit�t

SalzburgSeminar Computational Systems

Abstractions and Common Techniques

General Abstractions
- AM abstraction
- Tree Based Routing (Send/Intercept Interface)

Specialized Abstractions
- Power Management
- Time Synchronization

In-Flux Abstractions
- Epidemic Propagation
- Radio MAC

Absent Abstractions
- Distributed Cluster Formation
- Receive Queues



© 2004, M. Holzmann26
Universit�t

SalzburgSeminar Computational Systems

Common Techniques

Communication Scheduling and Snooping
- Two confliction techniques
- Applications tend to strike a balance

Cross-Layer Control
- Application controls 

| Network services e.g. Time synchronization
| Power Management

Static Resource Allocation
- Buffer allocation



© 2004, M. Holzmann27
Universit�t

SalzburgSeminar Computational Systems

Conclusion

Development of Abstractions/Techniques driven by
- Power Management
- Limited Ressources
- Real-Time Constraints

Most abstractions are still specialized
Spezialized Implementations offering greater efficiency



© 2004, M. Holzmann28
Universit�t

SalzburgSeminar Computational Systems

Comments on the Paper

Commendation
- Analysis / Discussion Section completes each 

Chapter
- Pointing out relevant facts
- Really good presentation

Criticism
- Use of terms / abbreviations without prior definition


	The Emergence of Networking Abstractions and Techniques in TinyOS
	Wireless Sensor Networks
	Overview
	Sensor Networks
	Application Examples
	Shooter Localization
	Pursuer / Evader
	Application requirements
	General EmNet Requirements
	TinyOS
	TinyOS operation
	TinyOS modularity
	Flow of Calls in the Component Graph
	Emergence of Abstractions in TinyOS
	Single Hop Communication
	Single Hop Network Stacks
	Radio hardware abstractions
	Cost of high-level hardware abstractions
	Multi-Hop Communication
	Multi-Hop Communication II
	Multi-Hop Common Developments
	Network Services
	Network Services II
	Abstractions and Common Techniques
	Common Techniques
	Conclusion
	Comments on the Paper

