A Survey of the Paper:
Terra: A Virtual Machine-Based Platform for
Trusted Computing

Gerald Stieglbauer

July 7, 2004

Abstract

Terra is an architecture for trusted computing using the concepts of
virtual machine monitors to accomplish the needs of a wide range of security
requirements. This article tries to summarize the situation found by the
authors of the paper |7], which led to the development of Terra. Based
on these studies, some arguments are presented, whether Terra gives an

important contribution to this field or not.

1 Introduction

Today’s computing environments (usually called operating systems) support a
huge variety of different applications. Depending on their purpose of use, the
applications have different requirements regarding performance, security and us-
ability issues. For instance, consider a bank application, an online game or a
web browser. Each of these applications has a different focus regarding the men-
tioned demands: All three applications have to provide a minimum of security,
whereas the bank application has to be more secure than the online game. On
the other hand, the bank application is a relative simple program with marginal
performance requirements. In contrast, the online game needs high-speed graphic
drivers on the local machine. To support the needs of all these applications, com-
modity operating systems (e.g. Microsoft Windows) are relatively huge software

bundles with complex interfaces. Software, which is bound to these interfaces are



totally addicted to the operating system. Because of this consolidation of appli-
cation and operating system, the reliability of software on top of an operating
system depends also on the quality of the operating system. In practice, the qual-
ity of software is usually reciprocally proportional to its size. As a consequence,
it is impossible to write simple, high-assurance applications for commodity oper-
ating systems.

However, vulnerable operating systems are not the only reason for vulnerable
applications. Applications, which run simultaneous on a commodity operating
system are poorly isolated. This means that an arbitrary (and potentially ma-
licious) application can badly affect any other running application. Therefore,
if we consider a set of running application, the whole system’s security level is
reduced to that of its most vulnerable application.

Sometimes, applications have to communicate with each other. The problem
is how two applications can establish trust. Current platforms provide only weak
mechanism for application authentication and attestation. Thus, an application
has to assume that its communication peer is malicious. In addition, there is
no trusted path between an application and a (human) user: The application is
unable to recognize, if it is communicating with the user or with a (potentially
malicious) program. Vice versa, the user has no warranties that he or she is really
interacting with the application he or she believed to.

As a summary of the presented facts, computing environments have to be

designed in order to

e are modular enough to tailor them as far as possible to the requirements of
the application that should be supported (e.g. QNX).

e provide a strong isolation between concurrently running applications.
e support application authentication.

e be able to establish a (bidirectional) trusted path between the application

and the user.

One common solution that addresses these requisites is a so-called closed system.
In contrast to an open system, whereas the user has full control over the system,
the control of a closed system is entirely given to the developer. The user has

only restricted access to install new application or modifying operating system

2



components. Popular examples for closed box systems are cell phones or game
consoles.

Nevertheless, both closed box systems and open box systems have a number
of advantages and disadvantages. Terra tries to combine the advantages of both
systems by using an architecture that is based on a virtual machine monitor. The
authors of Terra argue that this approach is the best way to accomplish to two
principles: Isolation and attestation of applications.

This article is structured as follows: Section 2 describes common techniques
how application can be isolated to improve security. Section 3 is about the
principles of application authentication and establishing trusted paths. Section
4 then describes the architecture of Terra, which tries to combine the principles
presented in section 2 and 3. Finally Section 5 closes with a discussion about the

main contribution of the paper.

2 Isolation of Applications

This section gives an overview about common strategies to improve isolation of
applications compared to commodity operating systems. Each strategy belongs

more or less to one or two of the following system levels:

e Operating system level: Integrating security policies into existing operating

systems
e Kernel level: Providing alternative kernel architectures (e.g. micro-kernel)

e Hardware level: Providing a virtual hardware abstraction layer (e.g. virtual

machine monitor)

In the following, we try to position each strategy somewhere in the suggested

system level hierarchy.

2.1 Mandatory Access Control

Most operating systems rely on discretionary access control (DAC) mechanisms.
These mechanisms distinguish only between two major categories of users: Com-

pletely trusted administrators and completely non-trusted ordinary users. DAC



access decisions are only based on user identity and ownership. Programs run by
a user inherit all of the permissions of the user and have therefore access to all
user objects, which are eventually used by other programs. Only weak protection
against malicious software is provided.

To overcome that lack of application isolation, so-called mandatory access
control (MAC) mechanisms are used. An example of a successful integration of
such a mechanism is SELinux [12]. MAC access decisions are based on labels
that can contain a variety of security-relevant information. The goal is a clean
separation of the security policy logic and the enforcement mechanism. Each
subject and object has a security label. All accesses from a subject to an object
must be authorized by the policy based on these labels.

The MAC mechanism is an example of providing improved isolation by intro-
ducing enhanced security policies into an operating system. Kernel subsystems
are used in SELinux in order to implement the clear separation of the security
policy logic (security server) from the enforcement mechanism (object managers).
In SELinux, the security server as well as the object managers are implemented
as kernel subsystems. Regarding the three system levels, this means that the
isolation strategy of SELinux is somewhere between the operating system level

and the kernel level.

2.2 Isolating Drivers

Isolation of driver is not the primary topic in this survey. Nevertheless, in many
cases, drivers are responsible for system crashes due insufficient isolation. Similar
to the isolation of application, drivers, which use operating system interfaces too,
have to be isolated to prevent them from affecting wider parts of the operating
system and running applications. In [16], a reliability subsystem called Nooks is
presented, which isolates driver from the operating system, without moving the
driver code out of the kernel (cf. microkernels). This is achieved by introduc-
ing a reliability layer that is inserted between the driver and the kernel. As a
consequence, existing kernels can be adapted with minimal effort.

The reliability layer has several purposes. The most important are:

e Isolation: This mechanism is used to prevent driver from damaging the

kernel. Every isolated driver executes within its own lightweight kernel



protection domain. This means that the driver runs still with the same

processor privilege, but has limited memory access rights.

e Interposition: This mechanism is implemented by some wrapper, so that
the driver can be called transparently from a commodity kernel’s point
of view. In addition, in most cases a driver, which is called through this

wrapper, does not have to be changed.

e Recovery: If a driver fails, this mechanism is used to simply restart the

driver in order to avoid a crash of the whole system.

Nooks is a classical example of implementing isolation at kernel level. How-
ever, this approach focuses more on the isolation of drivers than of applications.
Nevertheless, isolation of drivers plays an important role in the area of trusted

computing.

2.3 Using Alternative Kernel Architectures

The strategies, which are presented in the previous sections, enhance more or less
the capabilities of commodity operating systems and kernel architectures to im-
plement isolation. However, there are some different approaches using alternative

kernel architectures. Roughly, three different architectures can be distinguished:

e Microkernel architecture
e Exokernel architecture

e Isolation kernel architecture

In this section, the core principles of each architecture are described followed by

some implementation examples.

2.3.1 Microkernel Architecture

In section 2.2 some additional layers are inserted into an existing kernel archi-
tecture to provide restricted memory access to kernel subsystems. Nevertheless,
these subsystems still run in kernel privileged mode. The principle of a microker-

nel is to provide only the basic functions of a kernel[11]. All other subsystems are



moved out of the kernel and run in a lower privileged mode. In that way, faulty
subsystems can not disturb the kernel core or other outsourced subsystems. In
combination with mandatory access control mechanism (e.g. separating access
control subsystems, see section 2.1), these subsystems as well as application using
interfaces of the subsystems are efficiently isolated. In EROS [15] for instance,
a collection of system services are implemented by non-privileged applications.
The services provide higher-level abstraction such as files, directories and memory
objects. These objects are administered by MAC policies, which define secure

access control.

2.3.2 Exokernel and Isolation Kernel Architecture

Exokernels try to access the problem that commodity monolithic operating sys-
tems significantly limit the performance and freedom of application. This is be-
cause of traditional operating systems hide information about machine resources
behind high-level core abstraction (e.g. the high cost of general-purpose virtual
memory primitives [1]). This fact hinders applications to implement domain-
specific optimizations.

Exokernels, however, securely multiplexes machine resources while permitting
application-specific customization of traditional operating system abstractions
[6]. On top of an exokernel, several non-trusted library operating systems using
the exokernel interface. The exokernel interface isolates the library operating
systems. The interface is very low-level and can be implemented efficiently. To
ensure isolation, the exokernel interface must be secure, since resource control
is given to the application as far as possible. The responsibility of an exokernel

belongs to three major tasks:

1. Tracking ownership of resources
2. performing access control

3. revoking access to resources

The exokernel architecture is very similar to virtual machine monitors. Never-
theless, there are some differences: A virtual machine monitor tries to copies the
underlying hardware. Copying, however, leads to hiding information and inef-

fective use of hardware resources in some cases [10]. Exokernel architectures are

6



optimized regarding performance, while virtual machine monitors are optimized
regarding compatibility.

A similar approach is introduced by isolation kernels. Isolation kernels can
be positioned somewhere between exokernels and virtual machine monitors. Like
exokernels, isolation kernels do not copy the underlying hardware because of
performance reasons. Nevertheless, the virtualization level of the underlying
hardware is different to exokernels. The isolation kernel architecture Denali [17],
for instance, exposes virtual, private name spaces, whereas exokernels expose the

physical names of disk, memory and network resources.

2.4 Using Virtual Machine Monitors

Virtual machine monitors have a long tradition. First proposed and used in 1960
[9], several commercial applications (e.g. VMWare) based on this idea have great
success. A virtual machine monitor is thin layer between hardware and oper-
ating systems. This layer provides several virtual machines, which, in contrast
to exokernels, virtualize the real hardware as a one-to-one copy. This means
that the virtual machine provide a hardware interface, which is (nearly) iden-
tically to the real hardware. As a consequence, commodity operating systems
can run unmodified on this virtual hardware. Applications running on different
operating systems, which themselves run on different virtual machines, commu-
nicate via virtual devices and are therefore clearly isolated. Like exokernels,
security is guaranteed through relatively simple abstractions, such as a virtual
CPU and memory|5]. Simple abstractions can be implemented by simple appli-
cations. Disco [4] is a good example for implementing a slim and efficient virtual
machine monitor. Although exokernels are optimized for performance, the over-
head of virtualization of a virtual machine monitor can be made negligible too
[2]. As a matter of fact, an application’s performance even can be improved, if
a slimmer or more tailored operating system is used for a specific application|7].
Due to the benefits of a virtual machine monitor regarding compatibility issues,
the system designer has a wider range of supported operating systems. In prac-
tice, this means that a system can be designed more rapidly with virtual machine
monitors than with exokernel without surrender of performance improvement due

the use of tailoring.



Engine Engine

crea%

Computer ‘ ‘ Program

CFGV

‘ System ‘ ‘ Program

Initial State

Initial State

Figure 1: Computers, systems, programs and engines (adapted from [8])

3 Establishing Trust

Computer security is often reduced to two secure stand-alone operating systems,
where secure connections are implemented between those systems. However,
a secure connection has nothing to do with high-assurance applications, which
are interacting with each other. A secure communication means that you are
knowing either who creates the message that you want to read from a secure
channel (authentication) or who can receive your message that you have written
on a secure channel (confidentiality), or both of them (e.g. if a symmetric key
channel is used). “Who” means in this context a system, represented by a unique
ID (e.g. a network address). “Who” usually does not mean that you know with
which application you are talking to. Therefore, sufficient techniques are needed
that are able to establish trust between applications running on distributed or

isolated systems.

3.1 System Authentication

Figure 1 sketches a generalized boot process. A computer is a special kind of a
system and is made up by some hardware. A system is able to create an engine.
In case of a computer, the engine is some boot code that runs on the computer.
An engine usually loads a program with some initial state. The loaded and
running program forms up an additional system. The system, which is loaded
by the computer’s boot code, is usually the operating system. At this point, the
boot process does not stop: The operating system continues to load new systems
called applications and so on. All loaded programs on a certain computer are

called software stack.



To establish trust between two communicating computers, their software
stacks have to be certified [8]. To implement this, on every computer each pro-
gram is certified before it is loaded into the software stack. Certification means
that the loaded program meets a given specification and can be assured that the
system will behave as expected. Be aware that certifying a system does not have
anything to do with software correctness! It only ensures, that a certain instance
of software is loaded into the system (e.g. a certain Linux operating system, built
on a certain date with a certain compiler).

During the system loading, a hash is created from the binary image of the
program. This hash is signed with a private key used by the engine that loads the
system, which results in generating a MAC (Message Authentication Code)|3].
The MACs of various images that may be loaded into a given system are collected
in certificates. If the generated MAC complies with the engine’s list of trusted
applications it will be loaded, otherwise not. If it is loaded, the system receives
the certificate too. When the system is asked to authenticate itself, it sends its
certificate, which binds for instance an operating system to a certain computer.

Of course, certification is not only performed between a computer and an
operating system. If an operating system is verified, a new private/public cryp-
tographic key pair is created. The operating system uses the private key as a
secret to sign for other systems (applications) that it loads. In that way, a cer-
tification chain is built, so that each system is uniquely bound to the software
stack. Of course, if one of the systems is compromised after it starts nobody may
find this out. This problem has to be considered as a separate issue and has to

be handled outside of this technique.

3.2 Trusted Path

A trusted path is a mechanism by which a user may directly interact with
trusted software, which can only be activated by either the user of the trusted

software[13]. Without a trusted path, two situations may happen:

1. Malicious software impersonates the user to the trusted software. From the
trusted software’s point of view, there is no way to distinguish between an

input coming from a user and an input coming from a malicious program.

2. Malicious software impersonates trusted software to the user. Sensitive



information given by the user to the malicious application can be used by

the malicious software to break the system.

Commodity operating system hardly provides mechanism for trusted paths in
the case of distributed applications. System authentication introduced in section
3.1 can be used to support the elimination of this lack of security mechanism: If
an user uses a trusted application on the local machine to communicate with an
certified application on a remote machine, a trusted path between the user and
the remote application can be established (at least as long the remote application

has not been replaced after building the certification chain).

4 The Architecture of Terra

This section explains how the Terra architecture tries to achieve isolation and
attestation by using some of the previous approaches and techniques. Basically,
Terra is a conceptional study about implementation guidelines for systems, which
implement trusted computing. Although the authors have developed a prototype
implementation according to these guidelines, this prototype only underlines the
principles presented by the paper as a feasibility study.

To implement isolation of application, the authors have chosen the virtual
machine monitor approach. They opted for this approach because of the char-
acteristics of exokernels and virtual machine monitors regarding their clearer
isolation abilities (mainly presented by this survey in section 2.3.2 and 2.4) com-
pared to microkernels of mandatory access enhancements. Most of these abilities
are shared by the exokernel and the virtual machine monitor approach. As an
exception of this, the two approaches slightly differ regarding efficiency and com-
patibility issues. Here the authors voted clearly for the compatibility argument by
using the virtual machine monitor approach. They argued that compatibility is
more relevant in practice to improve the current situation of existing monolithic
systems and the virtualization overhead is negligible even for virtual machine
monitors.

The prototype implementation is based on the architecture, which is illus-
trated in figure 2: A VMWare GSX Server runs on the top of a Linux distribution.
The VMWare Server and the Linux distribution have to be seen as the actual

virtual machine monitor layer, which is indeed not very slim in the prototype

10



Management}

Debian
GNU/Linux

wrapper

VMWare GSX Server

Debian GNU/Linux

Intel architecture

Figure 2: The architecture of Terra

implementation. On the first virtual machine, provided by the VM Ware Server,
another Linux system is running with only one application: An instance of the
famous game Quake. The second virtual machine, a so-called Management VM
is running. The Management VM is responsible for high-level configuration of
the system, like creating new virtual machines, attaching them to virtual devices
and so on. In case of the Management VM, the operating system is reduced to
some wrapper calls, which simple forward commands from the Management VM
to the VMWare Server.

The main contribution of the paper lies in the combination of isolation and at-
testation of application. To achieve that, the traditional virtual machine monitor

architecture is enhanced by the following features:
e Authentication of application
e Trusted path

e Root secure

Authentication of application is based by the method described in section 3.1.
Since the software stack differs from traditional systems, the software stack is

built up as sketched in figure XXX: Instead of booting directly into an operating

11



VM+applications
A

signs

T(rusted)VMM
A

signs

Bootloader
A

signs

System firmware
A

signs

Hardware

Figure 3: The certification chain

system, first the bootloader is signed by the hardware. The bootloader, in turn,
signs the virtual machine monitor, which signs the operating system(s) and so
on.

In the prototype system, of course, this certification chain is not fully imple-
mented because of the decision of using existing architectures like the VMWare
GSX server, which actually needs a host operating system to run. Therefore,
the certification chain begins with the virtual machines provided by the VMWare
server. The certification algorithm is implemented by some dynamically loaded
libraries, which extend the VMWare API implementation.

The authors of Terra mentioned that trusted paths from the user to the ap-
plication and vice versa have to be implemented. Nevertheless, this is only a
postulation since they do not implement a secure user interface and refer only
to existing approaches like the NetTop architecture [14]. Of course, the partly
implemented attestation of applications of the prototype can play an important
role in implementing a trusted path.

As mentioned in section 3.1, a successful certification of a software stack does
not guarantee that some applications are modified or exchanged by malicious

programs after the certification process. To access this problem, the Terra archi-

12



tecture offers two techniques. First, to perform integrity checks, communication
between different layers of the software stack is partly realized using HMAC keys
[3] (e.g. communication of applications via a virtual hardware device). Similar
to the process of building a certification chain, this integrity checks are imple-
mented by using dynamically loaded libraries. For instance, those libraries are
used to overload the read/write operations used by the VMWare Server to access
hardware devices.

The second technique tries to prevent the malicious exchange of running ap-
plications by guaranteeing root secure. Root secure means, that even the owner
of the system has no access to the machine in order to break the basic privacy
and isolation guarantees. This is closely related to the concept of a closed box. In
contrast to closed system, in open system the platform owner has arbitrary access
to the system. Terra supports both kinds of systems, in order to accomplish the
security needs of the used applications: Open systems with highly non-trusted
applications run in parallel to closed systems, whereas the open system has no
chance to affect the closed system in any way.

In the prototype implementation, the game Quake is running at the top of a
minimal Linux distribution to build up a closed box. The Linux distribution boots
directly into Quake so that communication with the closed box is only possible
by using Quake’s network communication facilities. These are modified (again
by the use dynamically loaded libraries) in order to perform attestation and key
exchange with other clients of Quake on the same machine (but different virtual
machine) or on a remote machine. To ensure that the owner of the system has no
access to the closed box by removing some hardware (e.g. harddisk), encryption
is used to store the image of the closed box on a certain hardware device. The
modified read/write operations of the VMWare server are able to perform data

encryption too.

5 Discussion and Conclusions

The paper Terra: A Virtual Machine-Based Platform for Trusted Computing
describes a platform based on two principles: Authentication and isolation of ap-
plications. Various approaches exist in order to implement either authentication

or isolation of applications. The main contribution of the paper is the concep-

13



tional combination of the two principles. According to the emergence theory, the
whole is more than the sum of its parts. The paper tries to underline this by
giving a broad context and suggestions how to implement the architecture. One
strength of the presented approach is that it can be easily integrated into exist-
ing approaches. For instance, a standard Microsoft Windows environment has
only weak mechanism for isolation and attestation. To run high-assurance appli-
cations, the Windows environment could be enhanced by using the principle of
the Terra architecture as follows: A slightly modified commodity virtual machine
monitor (e.g. a VMWare ESX Server that complies with Terra’s postulations)
providing a virtual machine is inserted as an additional layer between the hard-
ware the Windows operating system. A second virtual machine is used to run a
high assurance application (e.g. a bank application) on top of a rudimentary, high
secure operating system. The high assurance application is running in a closed
box, which is ensured by the virtual machine monitor. Because of multiplexing
input events (e.g. mouse clicks) and output events (e.g. using special low-level
video driver to display the GUI of the application in parallel with Windows ap-
plications), the user does not notice this isolation of applications. The secure
application is able to connect itself to a bank server using authentication. Due
the use of data encryption, the user or a malicious application that run under
Windows has no chance to access the secure application to obtain any security
information or to replace the secure application by a malicious program.
However, there are still some open questions or unaccomplished expectations.
Although a broad context regarding how to implement a secure system is given,
the presented prototype implementation is a little bit poorly. The authors of Terra
claim to enhance existing solutions by providing root secure, attestation and a
trusted path. The prototype implements no trusted path at all. Even attestation,
which should be implemented by a chain of certification, is incomplete. Instead
of building up the certification chain beginning with the hardware up to the
application, the first link of the chain is the virtual machine provided by the
VMWare GSX server. Since the GSX server needs a host operating system to
run (e.g. Linux) no trusted base is provided. Therefore, the GSX server should be
replaced at least by the ESX server, which is able to run directly on the hardware.
There are still many open questions how to build secure drivers and at which
layer should they run. Although the paper addresses this issue too and refers

14



to some possible solutions, the problem itself is leaved as an open question. Re-
garding the presented demo architecture above, Terra offers no solution how to
multiplex input and output events. For instance, video drivers are quite complex
and low assurance applications in order to fulfill the requirements (e.g. perfor-
mance issues) of various applications. Therefore, it is still an open question how
to multiplex drivers for application with different needs.

Nevertheless, if Terra is seen as fingerpost to improve existing applications,
the contribution of the paper is quite useful. The prototype implementation
illustrates how to enhance an existing solution to improve isolation and introduce

attestation of application to get towards a trusted computing base.

References

[1] A. W. Appel and K. Li. Virtual memory primitives for user programs. In
Proceedings of the 4th International Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS), volume 26, pages
96-107, New York, NY, 1991. ACM Press.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM symposium on Oper-

ating systems principles, pages 164-177. ACM Press, 2003.

[3] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Message authentication
using hash functions - the HMAC construction. CryptoBytes, 2(1), 1996.

[4] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum.
Disco: Running commodity operating systems on scalable multiprocessors.
ACM Transactions on Computer Systems, 15(4):412-447, 1997.

[5] Peter M. Chen and Brian D. Noble. When virtual is better than real. In
Proceedings of the Eighth Workshop on Hot Topics in Operating Systems,
page 133. IEEE Computer Society, 2001.

[6] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. Exokernel: An
operating system architecture for application-level resource management. In

Symposium on Operating Systems Principles, pages 251-266, 1995.

15



[7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: A Virtual Machine-Based Platform for Trusted Computing. In
Proceedings of the 19th Symposium on Operating System Principles(SOSP
2008), October 2003.

Morrie Gasser, Andi Goldstein, Charlie Kaufman, and Butler Lampson. The
digital distributed system security architecture. In Proceedings of the 12th
National Computer Security Conference, pages 305-319, 1989.

R. Goldberg. Survey of virtual machine research. IEEE Computer Magazine,
(7):34-45, June 1974.

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector Briceno,
Russel Hunt, David Mazieres, Thomas Pinckney, Robert Grimm, John Jan-
otti, and Kenneth Mackenzie. Application performance and flexibility on
exokernel systems. In Symposium on Operating Systems Principles, pages
5265, 1997.

Jochen Liedtke. On micro-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating System Principles, pages 237-250, december
1995.

Peter Loscocco and Stephen Smalley. Integrating Flexible Support for Se-
curity Policies into the Linux Operating System. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Conference, pages 29-42,
June 2001.

Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C.
Taylor, S. Jeff Turner, and John F. Farrell. The inevitability of failure:
The flawed assumption of security in modern computing environments. In
Proceedings of the Nat. Inf. Sys. Sec. Conf., pages 303-314, October 1998.

R. Meushaw and D. Simard. Nettop: Commercial technology in high assur-
ance application. http://www.vmware.com/pdf/TechTrendNotes.pdf.

Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:
a fast capability system. In Symposium on Operating Systems Principles,
pages 170-185, 1999.

16



[16] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the
Reliability of Commodity Operating Systems. In Proceedings of the nine-
teenth ACM Symposium on Operating Systems Principles, pages 207-222.
ACM Press, 2003.

[17] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: A scal-
able isolation kernel. In Proceedings of the Tenth ACM SIGOPS European
Workshop, St. Emilion, France, September 2002.

17



