
Computational Systems Seminar
SS 2004

University of Salzburg
Department of Computer Science

Jakob–Haringer–Straße 2
A–5020 Salzburg

Austria

The Context of Schedule Carrying Code

Author: Emilia Coste

Academic Supervisor: Christoph Kirsch

1st of July, 2004

Abstract:

This paper represents a survey of the research context of the paper: “Schedule Carrying
Code” by Thomas A. Henzinger, Christoph M. Kirsch, and Slobodan Matic, presented at
EMSOFT in 2003. The survey presents models for real-time systems, the Giotto
methodology, current research in scheduling, and the Schedule Carrying Code (SCC)
with an analysis of the contribution.

Table of Contents

1. Introduction ..1
2. Models for Real – Time Programming..1

2.1. Synchronous Model ..2
2.2. Scheduled Model ...3
2.3. Timed Model..3

3. Giotto ...4
3.1. Giotto Tasks...5
3.2. Giotto Modes...5
3.3. FLET...6

4. Scheduling Theory..6
4.1. Approaches...7
4.2. Algorithms for Aperiodic Tasks..8
4.3. Algorithms for Periodic Tasks...8
4.4. Algorithms for Hybrid Sets..9
4.5. Existing Systems ..10
4.6. Trends in Scheduling ..10

5. Schedule Carrying Code ..10
5.1. Giotto Tool Chain...10
5.2. The Embedded Code..11
5.3. The Scheduling Code..12
5.4. Scheduling for Giotto Programs ...12

6. Examples of S code Execution...13
6.1. RM ...13
6.2. EDF...13

7. The Contribution of Schedule Carrying Code ...14
7.1. Proof Carrying Code...14
7.2. Table Driven & On-line Scheduler vs. S Machine ...14
7.3. Generating vs. Checking SCC ...15
7.4. Advantages ...15
7.5. Measurements – Microkernel vs. Traditional On-line Scheduler...................16
7.6. Drawbacks ..17

8. References..17

1. Introduction

In the information age, computers and information are present everywhere, in systems
ranging from household objects such as TV-sets, microwave ovens, to state-of-the-art
technology used in space exploration. Although they have different purposes and
capabilities, all these systems incorporate control laws for a specific behavior, some
environment sensors (e.g., buttons, temperature sensors, etc.), increasingly powerful
processing capabilities in form of microprocessors or microcontrollers and various
actuators (e.g., LEDs, displays, engines), forming a special class of systems: embedded
systems.

In Real-Time Systems the correctness of the system behavior does not depend only on
the value of the computation but also on the time at which the results are obtained. A
real-time task has a deadline, which is the maximum time when its execution must
complete. For a soft real-time task, meeting the deadline is important for performance
but it is not critical for the system behavior. For a hard real-time task, missing the
deadline may have catastrophic consequences on the controlled environment.

Although hardware technology advances and the computational speed increases, this
does not imply that the timing requirements are met. A fast system does not guarantee
the individual timing requirements of each task in all circumstances. Therefore rather
than being fast, a real-time system should be predictable [But97].

Some of today’s real-time control systems are still designed using empirical approaches
[But97] and implemented using low-level programming techniques, such as coding in
assembly language, changing drivers, timers, and task or interrupt priorities. This
approach leads to unpredictable software with difficulties in maintenance, verification
and code understanding. If the time constraints cannot be verified, then there is no
guarantee that the system will work properly in any situation. The system may work fine
for some time, and fail in certain cases of overload. In hard real-time systems, a missed
deadline can be catastrophic. Software testing cannot guarantee predictability, as it is
impossible to have sufficient test cases for input sensor data and environment state.

A guarantee for real-time systems can be achieved only by more sophisticated design
methodologies, static analysis of source code, schedulability analysis and operating
systems mechanisms to support computation under time constraints [But97]. We need in
embedded systems a shift of parading from the low-level programming to software
engineering techniques. The developer should work with abstractions which support
determinism, composability, reuse, code generation and verification.

2. Models for Real – Time Programming

The concept of time is the main characteristic that differentiates real-time systems from
other computing systems. Physical processes evolve in real-time, while software
processes evolve in a so called soft-time [Kir02]. Soft-time becomes real-time only at the
time instants of input and output, when the software processes get or communicate
values to the physical processes. In between, soft-time is discontinuous; it may depend
on task priorities, precedence relations, semaphores for shared resources, network
communication, hardware utilization, or scheduling strategy.

The Context of Schedule Carrying Code 1

Real-time programming models differ in the mapping of soft-time to real-time. [Kir02]
presents the synchronous, scheduled, and timed models.

2.1. Synchronous Model

The synchronous model (see Figure 1) is based on the assumption that all computations
and communications take no time; therefore the soft-time is always zero. The
synchronous process is triggered by some event in the environment or other
computational processes, and reacts to events in zero time providing instantaneously the
output. A synchronous program is deterministic if it computes at most one reaction for
any event and control state, and reactive if it computes at least one reaction for any event
and control state [Kir02]. The synchronous program must have instantaneous and
deterministic reaction, therefore the compiler has to prove that it terminates, i.e. there are
no infinite cycles in the synchronous program.

The implementation of this model may approximate synchrony by reacting to an event
before another event appears. A compiler should implement a verification of reactivity
and synchrony, based on the computation of the worst case execution time from static
code analysis.

Figure 1. The Synchronous Model and Implementation [Kir02]

Examples of languages based on the synchronous model are Esterel with explicit control
flow and Lustre, a dataflow language.

The Esterel language [GB00] is based on the mathematical semantics of Finite State
Mealy Machine (FSM) that ensures a deterministic behavior. It is an imperative language
that provides a set of primitives for expressing concurrency, communication and
preemption. The compiled Esterel program is represented into a Boolean Equation
System (netlists) with Boolean registers (latches). The states of the FSM are vectors of
the reachable register values and the transitions between states are the input/output
predicates (there are no loops).

The dataflow approach is close to the automatic control and electronic circuit design
methodologies providing a formal and functional model that is easier to develop and
maintain. Synchronous dataflow languages such as Lustre [HCRP91] combine the
synchronous with the dataflow programming models for an efficient description of
reactive systems with a continuous behavior. Lustre is a declarative language that
provides primitives and structures which restrict the dataflow systems to only those that

The Context of Schedule Carrying Code 2

can be implemented as bounded automata-like programs in the sense of Esterel.
However, expressing sequential or evolving behavior with a set of equations is
challenging.

2.2. Scheduled Model

The scheduled model (see Figure 2) is based on the classical scheduling theory, where the
operating system provides a scheduler or dispatcher, who decides which process, thread
or task to execute at which point in time. The soft-time is the time it takes for a program
to execute, the time between release and termination, i.e. the response time. The soft-
time is not defined in the scheduling model; it depends on the operating system,
processor utilization, and scheduling strategy. The time the task completes depends on
the implementation, but the soft-time must be less than the real-time deadline.

The scheduling is implemented in the operating system, but the schedulability analysis
requires the computation of the worst case execution time, which is done at compile
time. Hard and soft tasks are the same from the compiler point of view, but they need
different runtime mechanisms. An operating system which can handle both types of tasks
will guarantee the deadlines for hard real-time tasks and will minimize the average
response time for the soft ones. Section 4 describes the current research in scheduling.

Figure 2. The Scheduled Model and Implementation [Kir02]

2.3. Timed Model

In a timed model (see Figure 3), all computations and communication take logically a
fixed amount of time, no matter how much time they actually take; therefore the soft-
time is always equal to the real-time [Kir02]. The task will provide the output at the
required response time, even if the task has finished earlier and the output is available.
The compiler or the runtime system has to check time safety, i.e. there is enough soft-
time so that the execution finishes before the required response time.

The timed model assures determinism and predictability. The behavior of the program
depends only on the task properties (including control law) and the environment; it does
not depend on the platform or a specific implementation. A methodology for embedded
software development called Giotto is presented in Section 3.

The Context of Schedule Carrying Code 3

Figure 3. The Timed Model and Implementation [Kir02]

3. Giotto

Giotto is a new methodology for developing hard real-time embedded systems, based on
a time-triggered high-level programming language, the corresponding compiler and an
embedded runtime system based on virtual machines (e.g., E machine, S-Machine).

The traditional development cycle of an embedded control system begins with the design
of the system and its expression as a mathematical model (using some tools such as
Simulink). The model is later implemented manually or automatically (via specific code
generators) and the resulting code is tested and tuned for the target platform. Most of the
time some additional tweaks must be performed on the code to make it work as required
on the target platform. In this process the correspondence between the mathematical
model and the actual code is often lost. The final code is tightly coupled with the
platform (hardware and operating system) and can hardly be reused in similar systems or
enhanced with new functionality without major revisions or complete redesign and
implementation.

The Giotto development methodology specifically decouples the timing aspects and the
functionality aspects of an embedded software control system by introducing an
intermediate layer of abstraction between the mathematical model and the corresponding
implementation code (see Figure 4).

Figure 4. Embedded control systems development with Giotto [HHK01]

The Context of Schedule Carrying Code 4

The Giotto language expresses the reactivity of the application related to the external
environment. It allows a clear separation, in a platform independent way, of the logical
behavior of the implemented model with the physical implementation details such as
interrupts handlers, CPU mapping and scheduling of parallel jobs.

3.1. Giotto Tasks

The basic functional unit of the Giotto language is the task that represents some specific
functionality of the implemented model. Any Giotto task is a periodically executed piece
of code expressed in some language such as C that can be compiled for the target
platform. The execution of the task functionality on the target system is triggered by real
time and takes a non-zero bounded time. One important aspect of the Giotto system is
that tasks are independent and there are no internal synchronization points, such as
waiting for external resources or other events. This way any task will contain only the
functionality code that in some cases can be automatically generated from the
mathematical model of the control system (e.g., using Simulink). All resource utilization
policy and environment reaction is handled by the Giotto runtime system.

Communication between tasks or between tasks and sensors/actuators is realized via
ports handled by lightweight pieces of code called drivers. The ports can be assimilated as
buffers that contain the sensor and task output values. The input ports of each task are
distinct from any other ports in the Giotto program. However, the output ports of a task
may be shared with some other tasks only if the tasks are not running in the same mode.
In order to pass some values between different instances of the same task (usually
between successive invocations of the same task), the task may have state ports. The
drivers transport and convert values between ports and execute logically in zero time (the
actual execution time on the target platform is negligible), see Figure 5:

Figure 5. The time line for an invocation of a task t [HHK01G]

Any Giotto program will not specify the precise time when a task will run on a specific
CPU, or whether it may be preempted. The Giotto program will only specify the release
times of each task and the Giotto compiler will automatically generate timing code that
models the desired behavior on the target platform. Instantaneous communication and
time-deterministic as well as value-deterministic computation are the three essential
ingredients of the Giotto logical abstraction [HHK01G].

3.2. Giotto Modes

There can be more tasks that may run logically in parallel with similar or different
periods. Tasks may be grouped together into modes that denote a specific state of the
system. One Giotto program may be in only one mode at a time. However, depending

The Context of Schedule Carrying Code 5

on the intended functionality the system may switch at runtime between different modes
of operation. This allows a great flexibility to build complex application such as fly-by-
wire systems.

Each mode of the application has a predefined period and all tasks that run within that
mode have their periods derived from the mode period divided by an integer. In this way
any task of a mode will be executed an exact number of times during a mode period. The
execution of a Giotto mode (along with all its tasks) for a single period determines one
round. In distributed environments this round may also be equal or a multiple of the
network round.

3.3. FLET

The Giotto methodology conforms to the timed model and is based on the concept of
Fixed Logical Execution Time (FLET) that applies to each task of the embedded control
system. In contrast to generic real-time software development methodologies, where task
releasing and task ending are two non-deterministic moments in the software control
system, the FLET concept assumes that the release and end of the task are two exact
moments that do not depend on the scheduling strategy of the real-time operating system
or the CPU speed but on the control system model; the output of any task will only be
available at the end of its FLET. The resulting system is highly deterministic and its
behavior can be easily predicted. Moreover, the jitter at the output ports of the system
will be close to zero.

The execution time of each task on the target platform is non-zero and is bounded by
two values: Worst Case Execution Time (WCET) and FLET, where WCET is smaller
than FLET. The WCET of a task is a platform dependent value influenced by the target
OS and CPU speed. The FLET is however model-dependent and expresses the logical
time when the task get its inputs and when its outputs are available to other tasks or
actuators. During the period of FLET the task may be scheduled for execution at any
point in time, it may be preempted by some other running tasks or the OS, but logically it
will appear as executing for the entire period.

4. Scheduling Theory

The scheduling algorithms depend on the task model, whether tasks must meet their
deadline in any circumstances (i.e. they are hard or soft tasks), or whether task arrival is
regularly repeated (i.e. they are periodic or aperiodic tasks). Furthermore, sporadic tasks
are aperiodic tasks with a known minimum inter-arrival time. Periodic tasks may have
late release times, and earlier deadlines in correspondence with the period. Also, tasks
may have mutual exclusion constraints to access shared resources, or precedence
constraints, i.e. some tasks must execute in a defined order. Also they may allow or not
preemption, i.e. they may be interrupted by the scheduler to execute another active task.

Typical task attributes [But97] are (see Figure 6):
• Arrival time (a), i.e. request time or release time (r), is the time when a task becomes

ready for execution
• Start time (s) is the time when a task starts its execution
• Finishing time (f) is the time when a task completes its execution
• Deadline (d) is the latest time when the task should finish

The Context of Schedule Carrying Code 6

• Computation time (C), i.e. execution time, is the time needed to execute the task
without interruption. The worst case execution time (WCET) is the maximum
computation time needed on a particular processor.

• Lateness (L) = f – d. If the task completes before the deadline, its lateness is negative.

C

s fa d

Figure 6. Typical task attributes.

A schedule is feasible if all tasks can be completed according to the given constraints. A
set of tasks is schedulable if there exists at least one algorithm that can produce a feasible
schedule [But97]. An algorithm is clairvoyant if it knows in advance the arrival times of
all tasks. A heuristic algorithm may produce a feasible schedule, but does not guarantee
to find it, since it does not explore all possible solutions; heuristic algorithms are used to
reduce the complexity. An algorithm is optimal if there is no task set that this algorithm
can not schedule and another algorithm from the same class (e.g., fixed priority
algorithms) can. If an optimal algorithm misses a deadline, then no other algorithms of
the same class can meet it. Here the goal is to achieve a feasible schedule and a cost
function is not defined, but in a general sense an algorithm is optimal if it minimizes
some given cost function defined over the task set (e.g. average response time, total
completion time, weighted sum of completion times, maximum lateness, and maximum
number of late tasks) [But97].

4.1. Approaches

Traditionally there are two approaches in scheduling. In off-line scheduling all decisions
are computed at compile time, and stored in a dispatch table; at run-time no scheduler is
needed, but only a dispatcher which takes the next entry from the table. In on-line
scheduling all scheduling decisions are taken at run-time, when a new task is released or
when a task terminates. The scheduling algorithms are called static, if scheduling
decisions are based on fixed parameters, assigned to tasks before their activation, and are
dynamic if scheduling decisions are based on dynamic parameters that might change
during system evolution [But97].

Each approach has advantages and drawback and is suited to different domain problems.
Off-line scheduling usually is more deterministic, and can use complex algorithms, as it is
executed before the system is started, so we don’t have to worry about missing deadlines
because of the scheduler overhead. It manages distributed applications with complex
constraints and has small runtime overhead; it is actually a table lookup. The drawback is
that off-line scheduling needs a priori knowledge about all system activities and events,
therefore has no flexibility. On-line algorithms take the decisions at run-time and can
handle up-to-date information about tasks, therefore are more flexible. But on-line
algorithms have run-time overhead which can not be ignored, and should be minimized
by avoiding computationally expensive algorithms. Also schedulability analysis might not
be trivial.

Usually off-line scheduling is implemented as a search tree, such as in branch-and-bound
algorithms. On-line scheduling is usually based on assigning static or dynamic priorities
to tasks.

The Context of Schedule Carrying Code 7

4.2. Algorithms for Aperiodic Tasks

The algorithms for aperiodic tasks are summarized in [But97]. Jackson’s algorithm (i.e.,
Earliest Due Date) is optimal in minimizing the maximum lateness for independent
aperiodic tasks which have synchronous arrival times. The algorithm schedules the tasks
in the order of increasing deadlines. Horn’s algorithm (i.e., Earliest Deadline First, EDF)
extends the concept for tasks with arbitrary arrivals, therefore it allows preemption. The
algorithm executes at any instant the task with the earliest absolute deadline among all
the ready tasks. EDF may schedule even tasks with precedence constraints, by
transforming them into a set of independent tasks; the release times and deadlines are
modified so that each task cannot start before its predecessors and cannot preempt its
successors.

When preemption is not allowed and tasks can have arbitrary arrivals, it is NP-hard to
find a feasible schedule. When arrival times are known a priori, non-preemptive
scheduling is usually implemented by branch-and-bound algorithms [But97]. A search
tree has the root as an empty schedule and a leaf is a complete schedule. Intermediate
nodes correspond to partial schedules, and are extended by inserting a new task. The
complexity of the search is exponential in the worst case, and it is reduced by using
Bratley’s algorithm. It prunes the tree, by abandoning a branch when it finds a feasible
schedule, or when adding a node to the current path causes a missed deadline. The
Spring algorithm handles non-preemption but also additional constraints such as
precedence relations, and resource constraints. The algorithm uses a heuristic function H
to select a promising path. At each step of search, the schedule is extended with the task
which has the smallest value for function H.

These algorithms have been defined for aperiodic tasks on uniprocessor systems but can
be extended for periodic tasks, or even distributed systems.

4.3. Algorithms for Periodic Tasks

For periodic tasks, a wide used schedulability test is the utilization equation. The
processor utilization factor is the fraction of the processor time used for the execution of

the task set: ∑
=

=
n

i i

i

T
WCETU

1
, where is the period of task , and is the worst

case execution time of task . Both are constant for each task instance, during system
evolution. For an algorithm

iT i iWCET

i
A we compute the least upper bound of the

processor utilization factor. The schedulability test for a task set with the processor
utilization U is:

)(lub AU

• If , the task set is not schedulable, i.e. no scheduling algorithm can guarantee
the schedulability.

1>U

• If the tasks are schedulable by algorithm)(lub AUU ≤ A (the condition is sufficient
but not necessary).

• If 1)(lub ≤<UAU , nothing can be said on the feasibility of the task set, and a
different schedulability test should be used.

The Rate Monotonic (RM) algorithm [LL73] is optimal among fixed (i.e., static) priorities
algorithms. It assigns priorities to tasks according to their request rates, which are known
before execution and do not change in time. A task with higher request rate, i.e. shorter

The Context of Schedule Carrying Code 8

period, will get a higher priority. Also tasks can be preempted. For the RM algorithm, the
least upper bound is with the limit),12(/1

lub −= nnU 2ln)(lim lub =
∞→

nU
n

.

The Earliest Deadline First (EDF) algorithm [LL73] is optimal among dynamic priorities
algorithms. It assigns priorities to tasks according to their absolute deadline, which
depends on the task instance. A task with earlier deadline will get a higher priority. Also
tasks can be preempted. Notice that the same algorithm is used for aperiodic tasks, too.
For the EDF algorithm, the least upper bound is 1lub =U , the maximum value for the
processor utilization. Therefore, EDF is optimal among all algorithms based on priority
assignment.

These algorithms consider the deadline equal to the period, but they were extended to
support tasks with relative deadlines less than their period. Deadline Monotonic extends
RM and assigns priorities inversely proportional to the relative deadline. It is still optimal
among static priorities algorithms. A sufficient and necessary schedulability test is given
by the response-time analysis, computing the interference from the higher priority tasks
[ABR93]. The analysis is based on the concept of critical instant, at which a request for a
task will have the maximum response time; the critical instant occurs when the task is
released simultaneously with all higher priority tasks. For each task we can compute the
maximum response time and check if it is less than the deadline:

nii ≤≤∀ 1: , ij

i

j j

i
ii DC

T
RCR ≤
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

−

=

1

1

, where tasks are sorted by decreasing priority.

For the EDF with deadlines less than periods, the schedulability test is done using the
processor demand approach ([BRH90], [JS93], [But97]). It is based on the concept of busy
period, which is the first time instant when all the released tasks are completed.

4.4. Algorithms for Hybrid Sets

[But97] presents a comprehensive survey on algorithms for hybrid task sets consisting of
hard periodic tasks and soft aperiodic tasks. A simple algorithm is background scheduling,
which schedule aperiodic tasks when there are not periodic tasks ready to execute. The
Slack Stealing algorithm creates a passive task which tries to make time for servicing
aperiodic tasks by “stealing” processing time from the periodic tasks without risking to
miss their deadlines.

The other algorithms are based on the concept of a server, which is a periodic task used
for handling aperiodic requests as soon as possible. The server has a periods a WCET,
and a capacity. In general the server is scheduled with the same algorithm like the
periodic tasks. Examples of fixed-priority servers: the Polling Server serves any pending
aperiodic requests within the available capacity, and if none is pending it suspends itself
until the beginning of its next period; the Deferrable Server preserves its capacity until the
end of the period, if no requests are pending upon the invocation of the server; the
Priority Exchange preserves its high-priority capacity by exchanging it for the execution
time of a lower-priority periodic task.

The algorithms presented in this section are for periodic tasks scheduled with RM; they
are also available for periodic tasks scheduled with EDF, they just have a different name
and schedulability test.

The Context of Schedule Carrying Code 9

4.5. Existing Systems

Fixed priority scheduling is easy to implement and it is widely use in embedded systems,
being the basis for operating systems such as VxWorks, OSE [OSE], or OSEK [OSEK].
Off-line scheduling is used in the Time Triggered Protocol [Kop93].

Hard-real time operating systems were built in research centers aiming at implementing
new scheduling strategies and guaranteeing predictability (see [But97] for a
comprehensive survey). The MARS System has a static and off-line scheduler (i.e., table
driven), and also has phases, i.e. modes. The Spring system has four modules for
scheduling: dispatcher, local dynamic scheduler, distributed scheduler which tries to find
a node available when a task cannot be locally guaranteed, and meta-level controller
which adapts parameters of scheduling algorithms to load conditions. The RK System
handles more types of real-time tasks: imperative (scheduled with First Come First
Served - FCFS), hard and soft (EDF) and non real-time tasks (scheduled with FCFS in
background). The ARTS System use an object oriented paradigm. A scheduling policy
object can be selected from: RM plus servers for aperiodic tasks, EDF, Least Laxity First
(LLF), FCFS, Round Robin (RR). The HARTIK System uses dynamic preemptive
scheduling and on-line guarantee (EDF, and Stack Resource Policy).

4.6. Trends in Scheduling

The fundamental algorithms in scheduling date from the years ’70. Since then the focus
was to add more flexibility, such as to handle periodic and aperiodic tasks. [Foh94]
supports flexibility in off-line scheduling, to serve aperiodic requests and mode changes.

Research is done for mode dynamic task sets with reconfiguration at run-time;
components with a more complex structure, which have an internal state, as described by
a state machine, or systems with modes; and even for considering the dynamic
environment and not the WCET computed by static analysis.

On-going work is done in distributed scheduling, allocation of tasks to nodes [Tin92],
considering network effects, bounding worst case communication delay [Tin94].

Future trends are: feedback-based scheduling for estimating current workload conditions
and tuning parameters; energy-aware scheduling which takes voltage into account
minimize energy consumption but preserving the timing properties; elastic task models
which allow some task parameters to support adjustments for limited time. In complex
systems it becomes useful to combine more scheduling algorithms, using for example:
hierarchical scheduling, dual priority scheduling, or slot shifting [Foh94].

5. Schedule Carrying Code

5.1. Giotto Tool Chain

The Giotto methodology allows streamlined operations from the design phase to the
implementation and running phase of and embedded control system. The model
designed with a mathematical modeling tool (e.g., Simulink) is translated into a Giotto
timed program via an automatic translator (S/G Translator) [GS03]. The functionality
code, which in some cases can also be automatically generated from the mathematical
model with tools such as TargetLink, and the Giotto program will be compiled to

The Context of Schedule Carrying Code 10

produce system specific native code for the functionality of the model and machine
independent reactivity code called E code, see Figure 7.

Time safety checking based on the WCET calculations for each task and the generated E
code must be performed before running the resulting executable code on the target
system. Time safety checking should ensure that the behavior of the real system will
match the model behavior. The execution of a task is regarded as time safe if once
released, the task completes before any driver accessed its output ports and before
another instance of it will be released.

Figure 7. The Giotto development tool chain [Kir02s]

The actual execution of the generated code on the target system is highly influenced by
the scheduling strategies for multiple parallel tasks. With Giotto, schedulability analysis
can be performed offline in advance and the executable code may be accompanied by
scheduling information in the form of S code. A run-time scheduler and an ordering
policy are not needed anymore, because the Giotto compiler will generate both E code
and S code, which are executed at run-time.

Together the E code and S code executed by the appropriate virtual machines will
determine the exact moments in time when tasks will be released, preempted or drivers
will be executed to transport values between sensors, tasks and actuators, in other words
when each piece of native executable code will be executed on the target CPU. The E
code and S code are platform independent and have instructions for activating external
functions such as tasks or drivers and flow control.

5.2. The Embedded Code

The embedded code (E code) [HKM03] is a sequence of instructions that are interpreted
by a virtual machine called Embedded Machine (E machine) [HK02] in order to produce
the desired behavior of the target system. It represents the reactivity/timing code that
manages the release and deadline times of software tasks in reaction to external events,
and may be regarded as the closest relation with the mathematical model of the system.

However, the E code is highly portable, predictable and moreover composable. Multiple
E codes can be summed together to extend the functionality of the system in a modular
way. By specifying the logical times when drivers should be called, tasks should be
released or finish, the E code is totally decoupled from the real time (and the system time
of the platform).

The Context of Schedule Carrying Code 11

The E code instructions recognized by the E machine are the following:
• Call(d) – calls a driver to transfer values between different ports
• Schedule(t) – schedules a task for execution (release task)
• Future(g,a) – prepares a later jump to a different section of E code
• If (c,a) – controls the flow via logical functions on current values of sensor/task

ports.
• Return – ends the current section of E code.

5.3. The Scheduling Code

The scheduling code (S code) [HKM03] has some similar instructions with the E code
but their purpose is slightly different:
• Call(d) – the driver calls are intended for distribution when values must be passed

transparently between different nodes.
• The flow control is used to implement arbitrary scheduling that does not conform to

standard scheduling algorithms (such as Rate Monotonic or Earlier Deadline First).
Fork (a) – allows parallel execution of sequences of S code in order to run multiple
applications on the same CPU or provide load balancing on multi CPU systems (e.g.,
SMP machines).

• Dispatch(t,h,a) – begins or resumes the execution of a task t until timout h expires. A
schedule instruction in the E code will have as correspondent one or more dispatch
instructions in S code, because the E machine will just release the task for execution
(or flag it as ready for execution) and actually the S machine will dispatch that task on
CPU for a specific amount of time.

• Idle(h) – makes the S machine idle until timeout h expires.

In contrast with the E machine where all timing is related to logical time, the S machine
when interpreting the S code will take into account the real time of the system or the
global time in a distributed environment.

5.4. Scheduling for Giotto Programs

If S code is not used, then the compiler generates only E code and has to check the time
safety. [HKM02] proves that for E code generated from Giotto programs, EDF
scheduling is well-defined and optimal. If all modes of the Giotto program are reachable
(i.e., where each mode may be executed for a full period), then the schedulability may be
checked with the processor utilization equation for each mode independently. Time
safety checking is exponential for arbitrary E code, but it is polynomial for E code
generated from Giotto programs [HKM02]. Time Safety checking for Giotto generated S
code is also polynomial (see Section 7.3).

Flexibility in scheduling Giotto programs was introduced by [Hor03] making the
following extensions to the original Giotto model:
• All jobs have a WCET, including sensors readings, drivers, actuators
• All jobs, not just task invocations, may be preemptible
• The Spillover concept - The execution of jobs of one round of a Giotto program

should be allowed to continue into the next round of the program, if all the other
constrains and precedence constraints are met.

The Context of Schedule Carrying Code 12

6. Examples of S code Execution

We take as example the hover mode of a flight-by-wire system. The mode has a period of
120ms and contains a set of three tasks, for which the frequency relative to the mode
period is specified, as described in the following Giotto program [HKM03] (the code is
simplified here, omitting for example the mode switching conditions). Therefore the pilot
task is invoked every 120ms, the control task is invoked every 60ms, and the lieu task
every 40ms:

start hover {
mode hover() period 120ms {
 taskfreq 1 do pilot();
 taskfreq 2 do control();
 taskfreq 3 do lieu();
}

6.1. RM

Rate Monotonic scheduling of the lieu, control, pilot tasks in this flight-by-wire system is
denoted by the following section of S code [HKM03]. The actual execution of the
functionality code for these tasks on the CPU is depicted in Figure 8. We selected the
values for WCET to emphasis preemption (e.g. the control task has a higher WCET and
cannot terminate before the arrival of the lieu task).

Hover Mode S Code

RM: dispatch(lieu, +4)
 dispatch(control, +3)
 dispatch(pilot, +2)
 idle()
 fork(RM)
 return

end

released

Hover mode
(RM scheduling)

0ms 40ms 60ms 80ms 120ms

Pi

Contr

Lieu Lieu Lieu

lotPilot

Lieu

Control Contr

end

released olpre end olpre

preempted

end

end

end

Figure 8. The RM scheduling

6.2. EDF

A more efficient scheduling of the same task set, using the Earlier Deadline First
algorithm is denoted by the following sections of S code [HKM03]. There are less
preemptions and the remaining time for the system idle task is generally larger and in a
continuos block. However the S code for EDF is larger than the RM correspondent. The
red circles from Figure 9 represent the deadlines considered for tasks scheduling with the
EDF algorithm.

EDF0/60:dispatch(lieu, +4)
 dispatch(control, +3)
 dispatch(pilot, +2)
 idle()
 fork(EDF40/80)
 return

EDF40/80:dispatch(control, +4)
 dispatch(lieu, +3)
 dispatch(pilot, +2)
 idle()
 fork(EDF0/60)
 return

Figure 9. The EDF scheduling

The Context of Schedule Carrying Code 13

7. The Contribution of Schedule Carrying Code

7.1. Proof Carrying Code

In the SCC approach, the compiler proves the existence of a feasible schedule by
generating S code [HKM03]. S code is attached to the program (E code) and represents
its schedule. A SCC executable code is a real-time program that carries its schedule as
code, which may be validated at each use [HKM03]. SCC is an innovative approach by
extending the paradigm of proof carrying code to the scheduling theory.

Proof carrying code (PCC) [Nec97] was introduced as a mechanism by which a code
consumer can determine with certainty that it is safe to execute a program (generally in
binary form) from an untrusted code producer. The procedure of establishing “trust”
between the two entities is based on a formally defined safety policy expressed by the
code consumer, a safety proof from the code producer attesting the fact that the program
respects the safety policy, and a proof validator for the code consumer to check the
proof. It is required that changing the program or the proof will result in a validation
error. In the rare case when the program and the proof are changed so that the validation
succeeds, the resulting PCC is considered also safe.

One of the most important aspects of the PCC is the formal safety policy provided by
the code consumer that encapsulates the conditions it considers for the execution of an
untrusted program. The safety policy consists of two components: safety rules –
describing authorized operations and their preconditions; interface – describing the
calling conventions between the code consumer and the untrusted program and their
environment.

Producing PCC requires a certification process from the code producer that generates a
proof accompanying the program with regards to the safety policy expressed by the code
consumer. The proof and the functional binary code of the program are encoded
together and delivered to the code consumer for validation and later use. Before running
the untrusted code, the code consumer having the proof and the code in the PCC bundle
is able to perform an offline validation of the proof that if successful guarantees the
adherence of the program to the requested safety policy.

It is to be noted that producing the proof for an arbitrary program may be hard or even
impossible. Some programming languages that are used mostly for mathematical
problems (equations, boolean predicates, etc) are generally better suited for PCC, than
the general purpose ones. Large programs are difficult to check for loop invariants and
interfaces for all functions, but an advantage of PCC certification is that it can be
performed offline assisted by special certifying compiles accompanied by program
analyzers and code optimizers.

7.2. Table Driven & On-line Scheduler vs. S Machine

As discussed in Section 4.1, there are several approaches for running a set of tasks in an
embedded system. In the case of a low performance CPU available on the target system
every cycle matters and context switching is very expensive in terms of time and general
performance. In this case the most common execution strategy relies on a precompiled
dispatch table that was generated offline together with the binary code of the application.
A more flexible approach for scheduling tasks on the target system relies on on-line
scheduling during system runtime. It allows dynamic operations, on-the-fly system

The Context of Schedule Carrying Code 14

changes and simpler compilation. The drawback is that CPU utilization is higher because
of the scheduler overhead and without an offline time safety checking the system may fail
in the case of CPU overload.

Using the S code and a virtual machine for interpreting its instructions merges the
benefits of both approaches presented above. The S code is generated offline in a similar
way to PCC and is considered as a schedulability proof for the target program. Contrary
to table driven approach it may express more powerful scheduling strategies and with the
help of loop/flow control instructions it can reduce the memory footprint of the
schedule. The role of the on-line scheduler is taken by the lightweight S machine that will
interpret the S code and dispatch the tasks at the right moments without any overhead
incurred from standard scheduling algorithms, because the schedule is already generated
in the form of S code. The system can easily be extended or changed even during
runtime by changing the task set with the accompanying S code.

7.3. Generating vs. Checking SCC

Similar with PCC generating S code is a non trivial task as the S code will represent a
feasible schedule for the system. Finding such schedule for an arbitrary set of tasks is NP
hard but the process can be optimized when the S code is generated according to some
optimal algorithms such as EDF.

On the other hand checking S code is a polynomial task by exploring every path of the
possible running graph, presuming that all branches are taken [HKM03]. Checking the
proof in form of S code for a given system can be accomplished both offline when the
properties of the known in advance or online when adding another functionality to an
existing running system. In the last case the safety policies expressed by the real-time
constraints of the platform will be matched with the S code proof during the idle time of
the system. In case that the S code represents a feasible schedule for the current running
system, it may be loaded and executed together with the accompanying functionality
code.

7.4. Advantages

Flexibility. It may be argued that S code is nothing more than an accompanying
dispatch table for a given piece of code but the implementation aspects are less
important than the concepts behind SCC. By the use of fork instruction parallel pieces of
S code can be executed transparently on one or multiple CPUs without any changes to
existing code. This allows greater flexibility in choosing the right hardware platform for
an embedded system.

In the case of larger applications where there are possibly hundreds of tasks invocations
per mode round the S code has a significant advantage in reducing the memory footprint
of the same schedule. A typical table will have hundreds of entries (one for each
invocation), but with the power of flow control and looping or parallel execution via fork
the resulting S code could be a couple of lines. Swapping tables at runtime in order to
implement a dynamic system is much harder than simply executing a different section of
S code.

Composability and support for distribution. Via the call and fork instructions of the S
code any given schedule can be implemented transparently on a single CPU system or
distributed system. The S machine on one CPU system will run parallel sections of the S

The Context of Schedule Carrying Code 15

code attached to a program via some time sharing mechanism, but the S machine
running on a SMP system will simply for the same S code run each section of S code on
a different CPU. Driver calls at the S code level will transparently interface any
communication layer and may be used to transport values between the nodes of a
distributed embedded system.

7.5. Measurements – Microkernel vs. Traditional On-line Scheduler

The following figures illustrate some measurements on an embedded system based on a
StrongARM CPU running a microkernel of 8KB and various task sets (4, 10, 50 and 100
tasks) [KHS03].

Figure 10. Kernel overhead [KHS03]

Figure 11. E + S code overhead [KHS03]

The Figure 10 illustrates the scheduling overhead of the microkernel in four cases: EDF
online scheduler, and three S code based schedulers with EDF, optimized EDF and RM.
The online scheduler keeps a sorted list of tasks to decide which task should run next. In
the case of S code this is no longer needed as the sequence of instructions will choose the
next task to be executed. The RM based S code is slightly slower because it dispatches
more often already completed tasks.

The Figure 11 illustrates the overhead of the scheduler when running E code and S code.
The overhead of the online scheduler can be drastically reduced by using any kind of S
code (and it this case maintaining the system overhead under 10us even for 100 tasks).
Optimized S code may have close to O(1) performance.

Figure 12. Global CPU utilization [KHS03]

The Context of Schedule Carrying Code 16

Using the S code the system global utilization is lower and more tasks can be scheduled
for additional functionality (see Figure 12).

7.6. Drawbacks

Any technology has both advantages and disadvantages. In the case of SCC with a
reduced task set the memory footprint of a table containing the schedule may be smaller
than non-optimized S code. Also generating SCC is a non-trivial task and requires
advanced compilers and code analysis for time safety checking and then searching for a
possible optimal schedule which may be NP hard.

8. References

[ABR93] N. Audsley, A. Burns, K. Tindell, M. Richardson, A. Wellings, Applying New
Scheduling Theory To Static Priority Pre-emptive Scheduling, Software
Engineering Journal, 8(5) (1993) 284-292, September 1993.

[BHR90] S. Baruah, R. Howell, and L. Rosier. Algorithms and Complexity Concerning
the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor, Real-
Time Systems 2 (1990), pp. 301-324.

[But97] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, Kluwer, 1997

[Foh04] G. Fohler, Flexibility in Statically Scheduled Hard Real-Time Systems,
Dissertation Technische Universität Wien, April 1994.

[GB00] G. Berry, The Foundations of Esterel, In C. Stirling, G. Plotkin and M. Tofte
editors: Proof, Language and Interaction: Essays in Honour of Robin Milner,
MIT Press, 2000

[GS03] Gerald Stieglbauer, Model-based Development of Embedded Control Systems
with Giotto and Simulink, Master Thesis, Institute of Computer Science,
University of Salzburg, April 2003.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The synchronous
dataflow programming language Lustre, Proc. of IEEE 79(9), 1991

[HHK01] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Embedded Control Systems
Development with Giotto. In Proc. SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, ACM Press, 2001.

[HHK01G] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A Time-triggered
Language for Embedded Programming. In Proceedings of the First
International Workshop on Embedded Systems, ACM Press, 2001.

[HK02] T.A. Henzinger and C.M. Kirsch. The Embedded Machine: predictable, portable
real-time code. In Proc. Programming Language Design and Implementation,
pp. 315–326. ACM, 2002.

[HKM02] T.A. Henzinger, C.M. Kirsch, R. Majumdar, S. Matic. Time-safety checking for

The Context of Schedule Carrying Code 17

embedded programs. In Embedded Software, LNCS 2491, pp. 76–92. Springer,
2002.

[HKM03] Thomas A. Henzinger, Christoph M. Kirsch, and Slobodan Matic, Schedule
Carrying Code, EMSOFT, 2003

[Hor03] Benjamin Horowitz, Single-mode, single-processor Giotto scheduling, Report
No. UCB/CSD-03-1238, EECS University of California Berkeley, April 16,
2003

[JS93] Kevin Jeffay, Donald L. Stone, Accounting for Interrupt Handling Costs in
Dynamic Priority Task Systems, Proceedings of the 14 IEEE Real-Time
Systems Symposium, pages 212-221, December 1993

[KHS03] C. M. Kirsch, T. A. Henzinger, M. A. A. Sanvido, A Programable Microkernel
for Real-Time Systems, Technical Report CSD-03-1250, UC Berkeley, 2003.

[Kir02] C. Kirsch: Principles of Real-Time Programming, EMSOFT 2002

[Kir02s] C. Kirsch: Principles of Real-Time Programming, EMSOFT 2002, presetation
slides.

[Kop93] H. Kopetz and G. Grünsteidl. TTP - A Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems. In Proceedings of the 23rd International
Symposium on Fault-Tolerant Computing, pages 524–533, 1993.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications., Kluwer, 1997.

[LL73] J. Layland and C Liu, Scheduling algorithms for multiprogramming in hard real-
time environments, Journal of the ACM, January 1973.

[Nec97] G. C. Necula, Proof-carrying code, In Proc. Principles of Programming
Languages, 1997

[OSE] http://www.ose.com/prodserv/Default.asp. OSE Systems.

[OSEK] OSEK/VDX Operating System Specification, Version 2.2, September 2001

[Tin92] K. Tindell, A.Burns and A.J.Wellings, Allocating Real-Time Tasks: An NP-
Hard Problem made Easy, Journal of Real-Time Systems, Vol 4 pp145-165,
1992

[Tin94] K. Tindell, J. Clark, Holistic Schedulability Analysis for Distributed Hard Real-
Time Systems, Microprocessing and Microprogramming, volume 40, pages
117–134, 1994.

The Context of Schedule Carrying Code 18

	Introduction
	Models for Real – Time Programming
	Synchronous Model
	Scheduled Model
	Timed Model

	Giotto
	Giotto Tasks
	Giotto Modes
	FLET

	Scheduling Theory
	Approaches
	Algorithms for Aperiodic Tasks
	Algorithms for Periodic Tasks
	Algorithms for Hybrid Sets
	Existing Systems
	Trends in Scheduling

	Schedule Carrying Code
	Giotto Tool Chain
	The Embedded Code
	The Scheduling Code
	Scheduling for Giotto Programs

	Examples of S code Execution
	RM
	EDF

	The Contribution of Schedule Carrying Code
	Proof Carrying Code
	Table Driven & On-line Scheduler vs. S Machine
	Generating vs. Checking SCC
	Advantages
	Measurements – Microkernel vs. Traditional On-line Scheduler
	Drawbacks

	References

