
Universit�t
Salzburg

C a p r i c c i o:

Scalable Threads for Internet Services

Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, Eric Brewer

© 2004, Claudiu Farcas2
Universit�t
Salzburg

What is it?

`Lightweight POSIX threading package
`High performance upto 100k threads
`Flexible to address application specific needs
`Compiler assisted performance increase

© 2004, Claudiu Farcas3
Universit�t
Salzburg

Why?

`Internet services have increasing scalability demands
`The Hardware is fast enough but the Software is not

using it efficiently
`Event based approaches are hard to understand and

maintain
`Current threading packages do no scale well
`Threads consume too much memory space (stack)
`One thread per connection model is not efficient with

current threads

© 2004, Claudiu Farcas4
Universit�t
Salzburg

Features

`User-level implementation with
⌧Cooperative scheduling
⌧Asynchronous disk I/O
⌧Linked stack management for reduced memory

footprint
⌧Resource-aware scheduling

© 2004, Claudiu Farcas5
Universit�t
Salzburg

Events vs Threads

`Events hide the logical control flow
⌧May be difficult to understand
⌧Programmers need to match related events and correctly

save/restore context
⌧Application specific optimizations that are not portable

`Threads are simpler to understand
⌧Require efficient thread runtimes
⌧No “stack ripping”

`C. Lauer in “On the Duality of Operating Systems
Structures” states that Events and Threading systems
are alike and performance is only related to hardware

© 2004, Claudiu Farcas6
Universit�t
Salzburg

Threading models

`User-level
⌧Cleaner programming model
⌧Decoupling from kernel
⌧Portable and Flexible

`Kernel-level
⌧True concurency
⌧Benefit of multiprocessor architectures
⌧Direct access to hardware resources

`Distribution M:N vs 1:1
⌧1:1 – easier and more efficient scheduling, improved security
⌧M:N – closer to logical programming model

© 2004, Claudiu Farcas7
Universit�t
Salzburg

User-level threading advantages

`Cleaner programming model
`Decoupling of application logic and kernel threading

for faster innovation
`User-level scheduling correlated with application logic
`Lightweight for kernel mode switching and kernel

space usage
`Reduced overhead for thread synchronization
`Better memory management (fit application needs)
`Most management operations are O(1)
`Sleep time is O(n)

© 2004, Claudiu Farcas8
Universit�t
Salzburg

User-level threading disadvantages

`Blocking systems calls must be replaced with non-
blocking constructs with equivalent functionality

`Difficult to schedule on multiprocessor systems
`Ineffective with true concurrency support from hw
`Mapping of user-level threads over kernel-level

threads leads to decreased performance
`Two schedulers (kernel & user) for the same purpose
`Increased I-Cache and D-Cache footprint

© 2004, Claudiu Farcas9
Universit�t
Salzburg

User-level threading remaining issues

`Cooperative threading expected from compiler
`No preemptive scheduling
`Must be kept in sync with kernel and libraries

development
`Difficult handling of precompiled libraries or static

compiled applications
`Source code must be preprocessed

© 2004, Claudiu Farcas10
Universit�t
Salzburg

Approach

`User-level threading model
`Linked stack management
`Resource aware scheduling

2.4GHz Xeon, 1GB RAM, Linux
2.5.70

Capriccio LinuxThreads NPTL

Thread creation 21.5 21.5 17.7
Thread context switch 0.24 0.71 0.65
Uncontended mutex lock 0.04 0.14 0.15

© 2004, Claudiu Farcas11
Universit�t
Salzburg

Linked Stack Management

`Avoid large contiguous space allocation that
consume virtual memory space

`Better usage of stack space with allocation on
demand

`Allocation is done gradually in small linked stack
frames

`Compiler analysis for stack frame allocation points
`Checkpoints along “call” graph
`LIFO ordering for transferable stack frames
`No need for Garbage Collector

© 2004, Claudiu Farcas12
Universit�t
Salzburg

Linked Stack Management - issues

`Function pointers are difficult to manage
⌧Look at type and arguments
⌧Annotate external library functions with stack bounds

`Recursion may decrease performance
⌧Lightweight checkpoints
⌧Application specific local optimizations

`Compiler support required for non contiguous stack
`Space is still wasted in special cases

© 2004, Claudiu Farcas13
Universit�t
Salzburg

Scalability test

`Producer-consumer
microbenchmark
⌧LinuxThreads begin to degrade

after 20 threads
⌧NPTL works up to 100 threads
⌧Capriccio scales to 32K producers

and consumers for a total of 64K
threads

`Network performance
⌧Token passing among pipes that

simulates slow client links
⌧10% overhead compared to epoll
⌧Faster than LinuxThreads and

NPTL with more than 1000 threads
`Disk I/O performance comparable

to kernel threads

© 2004, Claudiu Farcas14
Universit�t
Salzburg

Resource Aware Scheduling - Purpose

`Monitor
⌧Memory and VM
⌧Stack usage
⌧I/O Socket descriptors for files, network
⌧CPU utilization

`Maximize throughput

`Reduce thrashing

`Similar with event-driven but transparent to
programmer

© 2004, Claudiu Farcas15
Universit�t
Salzburg

Resource Aware Scheduling - HowTo

`Use Blocking Graph based on “call path” (arcs)

`Detect areas where threads block (nodes)

`Dynamically learn behavior of the application

`Measure performance of each path with cycle
counters

© 2004, Claudiu Farcas16
Universit�t
Salzburg

Resource Aware Scheduling - HowTo

`Dynamically maintain optimal resource utilization
⌧increase priority of threads that release that resource
⌧decrease priority of threads that request that resource
⌧Use application specific metrics for optimum resource

utilization level

`Yield profiling
⌧User-level threads are problematic if a thread fails to yield
⌧Easy to detect - running times are orders of magnitude larger
⌧Yield profiling identifies places where programs fail to yield

sufficiently often

© 2004, Claudiu Farcas17
Universit�t
Salzburg

Resource Aware Scheduling -
Performance

`Micro Benchmark for 1MB stack buffer
⌧Touch all pages of the buffer randomly
⌧Up to 1000 threads with continuous stack
⌧Up to 100k threads with linked stacks

`Reduced VM size

© 2004, Claudiu Farcas18
Universit�t
Salzburg

Future Work

z Multi processor scheduling
z Profiling tools
z Integration with latest development of the Linux kernel

	What is it?
	Why?
	Features
	Events vs Threads
	Threading models
	User-level threading advantages
	User-level threading disadvantages
	User-level threading remaining issues
	Approach
	Linked Stack Management
	Linked Stack Management - issues
	Scalability test
	Resource Aware Scheduling - Purpose
	Resource Aware Scheduling - HowTo
	Resource Aware Scheduling - HowTo
	Resource Aware Scheduling - Performance
	Future Work

