Universitt
Salzburg

Capriccio:
Scalable Threads for Internet Services

Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, Eric Brewer

O=EAB

_ightweight POSIX threading package

High performance upto 100k threads

-lexible to address application specific needs
Compiler assisted performance increase

A P 2 2

2 © 2004, Claudiu Farcas "REEARCHH B

(~lInternet services have increasing scalability demands

~IThe Hardware is fast enough but the Software is not
using it efficiently

~IEvent based approaches are hard to understand and
maintain

(~ICurrent threading packages do no scale well
~IThreads consume too much memory space (stack)

~]One thread per connection model is not efficient with
current threads

3 © 2004, Claudiu Farcas "REEARCHW

4

~lUser-level implementation with
(X]Cooperative scheduling
xX]Asynchronous disk /O

XILinked stack management for reduced memory
footprint

[(X]Resource-aware scheduling

© 2004, Claudiu Farcas "REEARCHH B

(~]Events hide the logical control flow
[xXIMay be difficult to understand

XIProgrammers need to match related events and correctly
save/restore context

X]Application specific optimizations that are not portable

~IThreads are simpler to understand
XIRequire efficient thread runtimes
XINo “stack ripping”

(~IC. Lauer in “On the Duality of Operating Systems
Structures” states that Events and Threading systems
are alike and performance is only related to hardware [

5 © 2004, Claudiu Farcas "RSEARCHW

~IUser-level
[XICleaner programming model

XIDecoupling from kernel
X]Portable and Flexible

~IKernel-level
XITrue concurency
XIBenefit of multiprocessor architectures
XIDirect access to hardware resources

AIDistribution M:N vs 1:1

[x]1:1 — easier and more efficient scheduling, improved securjity:
XIM:N — closer to logical programming model I

6 © 2004, Claudiu Farcas "REEARCHH B

(~]Cleaner programming model

(~IDecoupling of application logic and kernel threading
for faster innovation

(~IUser-level scheduling correlated with application logic

(~ILightweight for kernel mode switching and kernel
space usage

~IReduced overhead for thread synchronization
(~IBetter memory management (fit application needs)
~IMost management operations are O(1)
~ISleep time is O(n)

7 © 2004, Claudiu Farcas "RSEARCHW

(~IBlocking systems calls must be replaced with non-
blocking constructs with equivalent functionality

(~IDifficult to schedule on multiprocessor systems
(~lIneffective with true concurrency support from hw

~IMapping of user-level threads over kernel-level
threads leads to decreased performance

~ITwo schedulers (kernel & user) for the same purpose
~lIncreased |-Cache and D-Cache footprint

8 © 2004, Claudiu Farcas "REEARCHW

(~]Cooperative threading expected from compiler
~INo preemptive scheduling

~IMust be kept in sync with kernel and libraries
development

(~IDifficult handling of precompiled libraries or static
compiled applications

~ISource code must be preprocessed

9 © 2004, Claudiu Farcas "REEARCHW

10

(~]User-level threading model
Linked stack management
Resource aware scheduling

2oz Xeon, 1G5 RAM, Linux Capriccio | LinuxThreads | NPTL
Thread creation 21.5 21.5 17.7
Thread context switch 0.24 0.71 0.65
Uncontended mutex lock | 0.04 0.14 0.15

© 2004, Claudiu Farcas

O=EAB

(~JAvoid large contiguous space allocation that
consume virtual memory space

[~|Better usage of stack space with allocation on
demand

[~J]Allocation is done gradually in small linked stack
frames

~lCompiler analysis for stack frame allocation points
(~ICheckpoints along “call” graph

I~ILIFO ordering for transferable stack frames

~INo need for Garbage Collector

11 © 2004, Claudiu Farcas "RSEARCHW

12

~IFunction pointers are difficult to manage
XILook at type and arguments
[X]JAnnotate external library functions with stack bounds

~IRecursion may decrease performance
XILightweight checkpoints
[X]Application specific local optimizations

~ICompiler support required for non contiguous stack
~ISpace is still wasted in special cases

© 2004, Claudiu Farcas "RSEARCHW

Producer-consumer
microbenchmark

XILinuxThreads begin to degrade
after 20 threads

(XINPTL works up to 100 threads

[X]Capriccio scales to 32K producers
and consumers for a total of 64K
threads

Network performance

[XIToken passing among pipes that
simulates slow client links

x110% overhead compared to epoll

[X]Faster than LinuxThreads and
NPTL with more than 1000 threads

Disk 1/0O performance comparable
to kernel threads

13 © 2004, Claudiu Farcas

Throughput Creguestsssec)

coeaaa

cegaEa

156880

legaaa

SEaaa

. — .
Capriccio

LinuxThreads
HPTL

1 18 laa laaa lagoa

Humber of

pr‘nducer‘s/cnnsumers

O=EAB

lagaoa

Universit t

Salzburg

(~IMonitor
XIMemory and VM
[XIStack usage

[X]1/0O Socket descriptors for files, network
X]ICPU utilization

(~IMaximize throughput
(~IReduce thrashing

(~ISimilar with event-driven but transparent to
programmer

14 © 2004, Claudiu Farcas "REEARCHH B

15

~]Use Blocking Graph based on “call path” (arcs)

(~IDetect areas where threads block (nodes)

~IDynamically learn behavior of the application

~IMeasure performance of each path with cycle
counters

© 2004, Claudiu Farcas "REEARCHH E

~IDynamically maintain optimal resource utilization
[Xlincrease priority of threads that release that resource
[(XIdecrease priority of threads that request that resource

X]Use application specific metrics for optimum resource
utilization level

(~lYield profiling
X]User-level threads are problematic if a thread fails to yield
[(X]Easy to detect - running times are orders of magnitude larger

XIYield profiling identifies places where programs fail to yield
sufficiently often

16 © 2004, Claudiu Farcas "RSEARCHW

[~IMicro Benchmark for 1MB stack buffer
[XITouch all pages of the buffer randomly
XIUp to 1000 threads with continuous stack
xIUp to 100k threads with linked stacks

Reduced VM size

17 © 2004, Claudiu Farcas "REEARCHH B

e Multi processor scheduling
e Profiling tools
e Integration with latest development of the Linux kernel

18 © 2004, Claudiu Farcas "REEARG-IH B

	What is it?
	Why?
	Features
	Events vs Threads
	Threading models
	User-level threading advantages
	User-level threading disadvantages
	User-level threading remaining issues
	Approach
	Linked Stack Management
	Linked Stack Management - issues
	Scalability test
	Resource Aware Scheduling - Purpose
	Resource Aware Scheduling - HowTo
	Resource Aware Scheduling - HowTo
	Resource Aware Scheduling - Performance
	Future Work

