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Abstract 
 
The survey covers the context of scalable threads models focusing on their usage for high 
performance Internet services and the improvements presented in the user level threading package 
Capriccio. It analyses the event vs. threads design methodologies, existing high performance server 
architectures, kernel and user level existing threading models and the usage of code analysis and 
smart compilers for better system performance.  
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1 Introduction 
 
The current demand for high performance computing is pushing the hardware and software 
to new limits. The Internet services have and increasing demand for scalability and 
availability. More and more content is added online every day and users request for 
information is growing exponentially. Economics reasons push the need for automated tools 
and faster development of high performance applications such as database and web servers 
and web applications. It is becoming more important to get the maximum performance out 
of each system and reduce overall costs. 

Traditional server-software design methodologies for Internet services such as one process 
per connection are doomed nowadays. The servers that hold the information have to deal 
with 1k-100k requests per seconds that generate a tremendous load on the application 
software, operating system and underlying hardware. For dynamic content not only one 
application is involved in producing high performance results but a group of applications. 
There are several bottlenecks in a real world information system (web content provider) 
composed of a mixed environment of databases, web servers and web applications. 
However, generally, the hardware is currently fast enough to meet the requirements of raw 
performance but the software is lagging behind. 

 

2 Existing Models for High Performance Applications 
 
The core of a high performance system is the operating system running on the system 
hardware and the application that provide the required services. Given the vast range of 
operating systems available and applications that provide similar services it is hard to decide, 
which solution is better and more important to understand why? However, at a closer look 
all systems designs have many common elements and we can group the approaches for high 
performance into two classes: events based and threads based. 

The two models for developing applications are almost opposite in all aspects. The question 
for any given service is which model is better for developing an application for a specific 
service? The debates about a specific model are always counter balanced by arguments for 
the other model: programming skills required for high performance event based systems are 
confronted with easy understanding of threading code, high memory usage of multiple 
stacks required for threading are confronted with lightweight memory footprint of event 
based programs.  

The advantages of one model are almost implicitly disadvantages for the other and debating 
on the best model is a long-term battle. However, in an empirical paper published in 1978, 
H.C. Lauer and R. M. Needham [LM78] revealed the two models as being duals of each 
other and that any system constructed according to a model can have a direct counterpart in 
the other model. We notice that the models presented in the paper are idealistic as there is 
no real system purely belonging to one class or the other. At lower levels, any given system is 
a mix of both models, and only the upper layer belongs to a specific model. Most developers 
that believe that a specific model is the solution to all problems generally neglect this aspect. 
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We can summarize the two models as message oriented and procedure oriented. The 
message-oriented system has generally a small number of processes that perform specialized 
operations and communicate their results using messages similarly with an assembly pipeline. 
The procedure-oriented system has generally many independent general-purpose processes 
that perform all operations on the data from the beginning to the end. We can share 
common resources between parallel streams of executions (processes or threads) via 
synchronizing techniques such as locks, semaphores, monitors, etc. 

 
Figure 1 – Typical concurrency management [AHTBD02] 

The behavior of a system designed according to any model has three major aspects: 

• Execution time of the algorithms inside the application itself 

• Computational overhead of the OS system calls 

• Queuing, waiting times for resources that are influenced by external events, and 
scheduling decisions. 

Changing a system designed according to a model into the other model maintains the code 
and execution time of the algorithms inside the application. Presuming that sending a 
message with allocation and queue overhead is timely equal with creating a new thread 
(forking) that involved similar operations, and watching a semaphore is also equal in time 
with waiting for new messages, and process switching and memory allocation is equally fast 
on both systems, the system will have identical performance no matter which model is used 
for its design. It is possible to adapt applications in order to exploit the benefits of both 
systems and avoid common problems by designing hybrid systems where both technologies 
can be used for improved performance (see Figure 1). 

In the case of similar quality implementations of an application with both models, the only 
thing that can influence the performance of a specific model is the platform support. By 
platform, we understand the system hardware (CPU, memory architecture, storage 
mechanism) and the operating system with specific API and libraries to access the hardware 
resources. Some platforms are more adequate for threading models when true concurrency 
may benefit from multiple CPUs, others may benefit from the reduced memory footprint of 
the event model. 
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From the platform support point of view, there are at least the following aspects that are 
often neglected (“Four Horsemen of Poor Performance” [JD]): 

• Data copies 

• Context switches 

• Memory allocation 

• Lock contention 

Data copies is generally the biggest performance killer and although most programmers 
avoid typical data copying operations there are lots of hidden or non obvious places where 
this could happen. An example of this would be a hashing function has all the memory-
access cost of a copy and involves more computation [JD]. The best way to avoid data 
copies is to use a level of indirection such as pointers or descriptors (pointer and additional 
information needed to operate with the buffer such as length, offset; list pointers for 
fwd/back operations in a list). However, in certain cases copying operations are still 
unavoidable or even required if the effort to compensate for their effect is much higher (e.g., 
searching through long lists of pointers, breaking up large I/O requests, etc). 

Most developers ignore the context switches because they presume that their impact on 
overall performance is negligible. This is true for simple applications and low CPU utilization 
but completely wrong in the case of high performance systems where not only the concepts 
but also their implementation has a great impact on the overall system performance. In the 
case of more active threads than actual processors, the increasing number of threads per 
processor leads also to an increasing number of context switches, and the system may spend 
more time switching between threads than actually executing their instructions. The most 
common way to decrease the number of active threads is by using the multiple connections 
per thread model (see Section 5). Splitting the server application into several stages such as 
listen, work, send results with an appropriate number of threads for each stage will improve 
the overall performance of the application and reduce thrashing [WCB01].  

Memory management is one of the most common operations in any application, and 
contrary to popular beliefs, it is a time consuming task especially in busy systems that have a 
highly fragmented memory. One possible solution that may limit the flexibility of an 
application is the use of static preallocated memory, and sometimes a clever use of shared 
memory space for multiple objects. In addition, we can save frequent used objects (that are 
mostly allocated and soon after deallocated) onto a look-aside memory space instead of 
destroying them, and with a simple algorithm, we can check their existence before 
reallocation. Sometimes contiguous allocated space such as arrays may waste some memory 
compared with lists of objects but the access time performance is heavily improved (no need 
to walk through the list to find the N-th element). In the case of concurrent access requests 
to the same memory object, the locks may prevent one application from benefiting of 
concurrency. For a better synchronization that avoids waiting for resource release, we can 
use some clever cooperative multitasking technique. 

Lock contention is a major problem when dealing with concurrent streams of execution. 
There are at least two kinds of locking: lightweight and simple but coarse grained that 
serialize the activities that logically are performed in parallel or complex and fine grained that 
reorder the requests for a resource for better utilization, loosing some performance with the 
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scheduling overhead. The right solution for an application is somewhere in between and 
finding it is not a trivial task. One possible idea is to build a staged application with separated 
data sets and avoid that two requests are in contention unless they are both in the same data 
set and in the same processing stage. 

There are some other performance factors that have to be considered when choosing the 
right design model for an application, most of them deriving from the platform such as: 
storage subsystem, network protocol and TCP/IP stack implementation, page and cache 
size, signal based wakeup sequences, system calls overhead, etc. An idea is to develop a 
micro-benchmark application for that specific platform that measures the performance of 
each approach in the most sensitive areas [JD]. 

 

3 Events Based Model 
 
The events based systems rely on signaling between different processes to transport data 
according to the application algorithm. Each process is handling a specific operation in the 
dataflow and we can assimilate the whole process with assembly pipeline. Depending on 
implementation, running processes can generate events via signals, messages, pipes, etc.  

Generally, an event-based system is composed of an event monitor and some event handlers 
that express their interest in certain events. Handlers can be short-lived and running without 
preemption in the case of small operations (e.g., interrupt handlers for some I/O devices), or 
long-lived when performing time-consuming operations on their input data. In the last case, 
we can decrease the system load with cooperative multitasking or balancing on other CPUs. 

 

3.1 Advantages 
 

Most event-based systems have one execution stream and require no true CPU concurrency. 
The event monitor loops infinitely waiting for an event to happen and to pass it to the 
appropriate handler. We can easily use the idle time for background tasks without fearing 
that it may influence the performance of other processes.  

There is no need for resource locking or synchronization, and hardly for preemption when 
handling one event at a time. This increased the utilization efficiency on single CPU system 
because there is no context switch or locking mechanism involved. The timing aspects of an 
application are only related to events and not to internal scheduling [Ous96].   

The events are perfectly suited for graphic user interfaces and we can use the registration 
service provided by the event monitor to enforce security on the application. In such cases, 
the handler implements a single behavior such as copy, delete, undo, confirm, etc. 

Distributed systems are using the events for handling input data with low overhead. Each 
handler is processing an input signal or a chunk of input data and sends immediately a reply 
with the results. 
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3.2 Disadvantages 
 
In the case of long non-uniform handlers running time, when a handler takes a longer time 
to execute, the others are blocked and the application may become non-responsive. There 
are some workarounds available depending on the target application: start a sub-process to 
handle the work and use events just to query its completion, or provide mechanisms for 
cooperative multitasking where handlers can yield CPU to each other. 

Another solution would be splitting a workload in several handlers and add completion 
events between different stages. However, as there is no state maintained between events (a 
handler must return) this makes implementation much harder and the internal algorithm 
becomes hard to understand, and in some cases very complicated.  

The most common problem with events is the "stack-ripping" phenomenon [AHTBD02]. 
At each point that a blocking call could occur, the developer has to rip apart the stack and 
create a closure invoked via callback. This procedure obscures the intent of the program and 
makes maintenance or extension hardly possible. It also applies for saving live state of an 
event handler when the programmer has to keep track of all pairs call/return. 

In some cases event driven I/O is not possible because of poor buffering or lack of OS 
facilities (e.g., async I/O) or CPU concurrency with task/handler preemption. 

 

4 Threads Based Model 
 

A thread-based system relies on multiple independent instances of a procedure regarded as 
execution streams that work using the same algorithm on similar data to achieve higher 
processing throughput. The threading model derives from the process model for true 
concurrency and takes advantage of multiple CPUs in high-end systems. The initial 
implementations consisted of lightweight processes that share some common data in user 
space.  

The threading model fits well a variety of applications and is regarded as a solution to benefit 
from the real performance of a system. A single threaded application that requires more 
performance can be easily extended by creating multiple threads that perform the major 
operations in parallel. In the case of multi-CPU systems, we gain increased performance with 
little effort. Using the POSIX standard for development will also make platform migration 
easier. 

There are two mapping alternatives for implementing threads in an operating system: 

• 1:1 - easier and more efficient scheduling for one kernel thread  per one user thread 
proved to be the fastest approach 

• M:N – closer to logical programming model but the asymmetric distribution of user 
threads on kernel threads has complexity problems, requires more resources and the 
overall performance is lower than 1:1. 
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4.1 Advantages 
 
Threads are generally more powerful than events and closer to the parallel applications. The 
concurrency in modern server application generally starts from independent requests, and 
similar pieces of code handle them in parallel. The algorithm behind an application and the 
data flow is easier to understand as the programmer does not need care about transferring 
states between different parts of the application (e.g., between different methods 
implemented in separated modules) that implement successive operations. This way a 
threaded application can have long-lived stateful handlers without blocking. Shared data 
allows for fast global configuration and easy access to common resources that are crucial for 
database applications. 

With preemptive scheduling and independent execution, threading systems can handle 
overlapping requests and perform concurrent I/O. It is possible to implement dedicated 
threads for each operation that can be a bottleneck for the system such as disk operations or 
network communication. We can split the application into multiple parallel working threads 
and a couple of interfacing threads that communicate with the environment (fetching input 
data, storing, communicating results). 

We can avoid the common problems with stack allocation and scheduling by using smart 
compilers and code analysis. Stack space can be fragmented into linked blocks and allocated 
on demand by checking the requirements of the application in advance (at compile time or 
during runtime). With resource monitoring it is possible to avoid long stalls for resources 
and thrashing [BCZNB03]. 

 

4.2 Disadvantages 
 
Earlier implementations based on lightweight processes were slow and required large 
amounts of memory to operate. In addition, the available process IDs were running to their 
limits relatively soon. It was impossible to create and operate thousands of threads because 
of scheduler overhead and memory resources. 

Accessing shared data requires synchronization, and the locking mechanism severely 
diminishes the true concurrency aspects of the threading programming model. However, 
without synchronization, the threads that access some common resources can generate race 
conditions and may easily corrupt data.  

Using locking mechanism can lead to deadlocks when a circular dependency between threads 
appears during the application execution. With simple locking by monitoring the availability 
of a resource, the true concurrency benefits are lost. Fine-grained locking mechanisms may 
improve application performance but may increase system load because of scheduling and 
context switching additional overhead [Ous96]. 

It is hard to design independent modules that communicate efficiently because one thread 
deadlock can lead to unpredictable behavior of the following module. Debugging threading 
systems is hard because of data dependencies and timing issues. 
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Porting threads based applications to different platforms (e.g., UNIX to Windows) is 
difficult without a common API interface. Also standard libraries are not thread safe on all 
platforms and can lead to unpredictable behavior of the application. 

Stack allocation for each thread can lead to high memory consumption and thrashing. Early 
implementations allocate fixed size stack space for each thread even if the stack 
requirements for that thread were minimal. The address space in this case is wasted on most 
32-bit processors. 

 

4.3 Kernel Threads 
 
The kernel threads are the lowest level of parallel streams of execution integrated directly 
into the core of the operating system. Here there are the benefits of true concurrency and 
multi-processor support, direct access to hardware resources and OS internals. Their usage is 
mostly for concurrent processing of kernel jobs and separating several possible bottlenecks 
such as disk I/O and network communication.  

However, the kernel threads are highly platform dependent and hardly portable. 
Programming kernel threads is generally difficult and debugging can be a problem because 
all operations are in kernel space and deadlocks can lead to complete system locking. Errors 
in memory allocation or code can lead to unpredictable behavior and system crashes. Most 
upgrades in the internal algorithms and other improvements are only possible with kernel 
upgrades that generally require an expensive restarting of the whole system. 

 

4.4 User Threads 
 
We see the user threads as a portable way to handle concurrency in most operating systems. 
There are many threading packages available for most operating systems and that can be 
changed on the fly without any side effect on the operating system’s behavior. The OS does 
not need to be upgraded in order to support certain threading package or application. 
However, direct access to OS structures and scheduling is slower than with the kernel 
threads. 

The cleaner programming model, and total logical decoupling from the kernel threads, 
makes them the most used threading model for highly concurrent applications. The resulting 
code is generally highly portable and flexible to adapt to various user-level threading 
packages.  

With the various approaches in implementing a high performance user level threading 
package it is generally easier to use the latest enhancements and state of the art technology 
with an application than to wait for their integration into the next stable version of the 
operating system. 

The use of user level threads reduces kernel mode switching and kernel-memory utilization. 
We can improve their scheduling according to the application logic by code analysis and 
smart compilers. This can also lead to better memory management that fits the application’s 
needs with very low overhead. 
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However, the blocking system calls present in the application code may stall the entire 
execution of all tasks. Existing high performance threading packages such as Filaments 
[PG95] are still slow at dealing with a large number of blocking calls. For a fast recovery 
from this problem, we must convert all the blocking system calls to non-blocking equivalents 
that pool the resource to check its availability and perform the requested system call only 
when this will result in an immediate return. The additional work for this task (all user code 
must be generally parsed) can be mostly automated but it depends on special code analyzers 
and smart compilers to perform the additional changes needed.  

In addition, the true concurrency support of the kernel threads is mostly lost and there is 
hardly a benefit from multi processor systems. Mapping of user level threads to kernel 
threads decreases the performance of the application and the existence of two schedulers for 
the same purpose (for kernel and user threads) introduces additional overhead. The cache 
memory footprint of the application is increased and there will be more hardware stalls for 
fetching new instructions and data from the main memory. 

The scheduling of user threads is generally non-preemptive and the compiler must provide 
some sort of cooperative scheduling in order to emulate concurrency. Each thread has to 
yield periodically the CPU to other threads. In some cases when some threads contain CPU 
intensive operations this can result to stalls for the other threads. 

Handling precompiled libraries or static compiled applications is difficult as there is no 
information about the internal policy for scheduling, their stack allocation requirements or 
other common resources. Also keeping in sync with kernel development is required in order 
to allow seamless compilation of the application with new operating system releases. This is 
not always possible and requires sometimes adaptations to the program source code [ST]. 

 

5 Real World Systems 
 
The existing high performance systems involve a variety of technologies for handling 
multiple clients in an economic way. These include multiple concurrent execution streams 
such as multi-process (MP) and multi-threaded (MT), event based such as single process 
event-driven (SPED) and even a hybrid approach: asymmetric multi-process event-driven 
(AMPED) architecture. 

The multi-process or multi-threaded models are using generally the same design 
methodology based on multiple concurrent streams of execution with minor differences in 
the way data is passed between processing units (for processes there is no need for 
synchronization mechanisms on data access as each one has its own private memory space), 
and resource management. By default for each new connection, a new thread or process is 
created and the connections are multiplexed by context switching between the units that 
cannot continue because of blocking and the ones that still can process data. Both models 
can benefit from OS support for overlapping disk activity and fast network processing, but 
also inherit performance hits because of context switching, forking a new thread/process 
overhead, inter process communication respectively synchronization delays. 

When using the one thread per connection model the increasing number of active threads 
per processor will lead to an increased number of context switches that will severely 
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diminish the performance of the system.  Limiting the number of active threads to the actual 
number of available processors in a system is a possible solution to this problem but the 
typical limitation of only one active thread will prevent the utilization of other CPUs and the 
application will become mostly network bounded. The well-known Apache webserver that 
handles currently most web sites worldwide evolved from the MP to MT model with 
minimal performance improvements mostly because of existing threading implementations. 
Another example is the lightweight Knot-C webserver [BCB03]. 

The SPED architecture relies on multiple independent stages of execution, activated by an 
event dispatcher. It handles a connection by passing the data through all necessary stages 
and requiring no context switching or synchronization. Typical implementation uses 
generally a single process along with non-blocking I/O and an event notification system 
based on primitives such as select or pool that determines when the corresponding system 
call (e.g., for network read/write) will execute without blocking. For multi-processor 
systems, running multiple SPED servers in parallel takes advantage of the additional 
hardware performance and provides excellent results. An example lightweight system based 
on SPED is the µServer [BO01] that in addition uses the multi-accept procedure [CM01] to 
drain the accept queue before performing the work for each connection. 

The AMPED architecture used by Flash webserver [PDZ99] consists of several helper 
processes that perform most time consuming disk I/O operations on behalf of the mail 
event driven process that uses the SPED approach. The result is a fast webserver that 
outperforms most MP or MT based web servers. 

 

6 Capriccio Approach 
 
We designed Capriccio as a high performance lightweight user level threading system trying 
to overcome the previous drawbacks of similar threading packages. It scales well up to 100 
thousands threads and aims for POSIX compliance for easy integration with existing 
applications. It also features cooperative scheduling, asynchronous I/O operations, linked 
stack management for reduced stack space and resource aware scheduling. Most of these 
features are available via code analysis, automatic source changes and compiler 
optimizations. 

The Capriccio threading system comes to prove that threading model is adequate for high 
performance computing (in this case internet services) but the problem that prevented its 
high scale usage is the poor implementation of current threading packages [BCB03]. By 
reducing the common O(n) operations in the scheduler and minimizing the number of 
context switches and additional kernel crossing it can match the performance of event based 
systems. 

The linear control flow introduced by threads is not regarded as a limitation but a natural 
way of thinking and easier programming. The event-based systems have the possibility to 
implement any kind of control flow but in practice, applications use the same call/return 
mechanisms available with threads. 

Synchronization problems inherent to any threading system can benefit of cooperative 
multitasking on single processor systems in the same way as the event based systems. In 
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addition, the scheduling advantage at application level of the event-based systems can be 
applied to the virtual processor model of the threading system. 

6.1 Stack Management 
 
A common problem when using threads is stack allocation. As each thread corresponds to 
an execution stream, we can consider it as an independent program and apply regular stack 
allocation policies similar with any other process of the system. This however leads to 
wasted address and memory space that can rapidly decrease the system performance.  

Typical implementations on Linux allocated 2MB of stack space for each user thread. 
Handling just 1000 connections required more memory and address space than most 
computers had at that time. Other approaches used in languages such as Olden are using the 
concept of “spaghetti stacks” [BW73] - where multiple environments share a common stack 
subdivided in sub-stacks that are interleaved, or “stacklets” [GSC95, CB01] - that are 
allocated at runtime based on previous code analysis. It is possible not to use any stack at all 
with kernel threads [DBRD91] by packaging the entire state in a dedicated memory block in 
a similar way with the stack ripping mechanism used in the event model [AHTBD02]. 

Capriccio uses a better approach by splitting the stack space in small chunks that are 
allocated gradually on demand. In order to detect when a new stack chunk is needed the 
application source code is parsed to detect the best place to insert new stack allocation 
points. In this process, we create a weighted call graph where nodes represent the function 
calls of the application weighted by the amount of stack space required for a single stack 
frame that the function consumes, and the edges represent the logical flow of operations.  

 
Figure 2 - Call graph annotated with stack frame sizes [BCZNB03] 

Any path in this graph will correspond to a possible trace during the program execution and 
the sum of weights along the path will be equal with the total stack space required (see 
Figure 2). However, for most programs using recursion of function pointers it is not 
possible to detect at compile time the maximum stack space required during the execution of 
the program. This requires dynamic allocation and release of stack frames based on the 
evolution of the program. Capriccio executes all these operations in LIFO order allowing the 
application to reuse memory space and diminishing the overall memory consumption of the 
application.  
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Figure 3 – Dynamic allocation/deallocation of stack frames [BCZNB03] 

The checkpoints for inserting the stack management code are detected by performing a 
depth first search in the weighted call graph. Inserting checkpoints or stack management 
code before each call leads to low performance. The idea is to minimize the number of 
checkpoints and allocate at each checkpoint the right amount of stack space that will suffice 
until the program reaches another checkpoint. For recursive programs there are loops in the 
call graph that must be broken by inserting a compulsory checkpoint. In some cases, a small 
amount of stack space is wasted between successive checkpoints but this is a tradeoff for 
increased speed. Accessing the stack requires synchronization that Capriccio accomplishes 
via cooperative threading. 

In the case of function pointers or external functions from precompiled libraries, it is not 
possible to detect the requirements of stack space in the weighted call graph. The solution in 
this case is to annotate the library or each possible function with an estimation of the 
amount of stack space required. This can be determined experimental via profiling tools but 
will not guarantee the behavior of the application.  

This approach of dealing with the stack problem has a number of memory related 
advantages such as reduced stack footprint and virtual address space when running a large 
number of threads, reuse of memory space via dynamic LIFO allocation / deallocation 
mechanism that does not require a garbage collector. We also gain improved speed 
compared with traditional dynamic allocation on call and contiguous allocation at startup 
(performing malloc on fragmented memory space is expensive). 

The disadvantages are coming from the additional step required to detect the right places for 
inserting the stack management code and library annotation in the case of precompiled 
libraries. However, most of these tasks can be fully automated and possibly integrated 
directly into compiler. 

 

6.2 Scheduling 
 
Scheduling the user level threads is problematic because when one thread calls a blocking 
system call the whole application will stop waiting for that system call to return. There is no 
preemption at user level code, and the only solution available is to use cooperative 
multitasking between threads. For the case of blocking system calls Capriccio introduces a 
novelty: an event monitor that transparently watches for the availability of each resource 
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needed and then performs the blocking system call. Although similar approaches were 
already described [FCEZ03], the Capriccio implementation is purely at user level and 
handles better the information gathered by monitoring the resource utilization level. 

With this approach, all blocking system calls are rewritten at library level (libc 2.2 in 
Capriccio’s case) and replaced with a call to the event monitor that yields the CPU to 
another thread preventing the overall stall. Only the thread that originally performed the 
system call will block until the result is available, and the remaining threads will successively 
yield the CPU generally in a round robin fashion. 

 
 

 
Figure 4 – Sample blocking graph for the Knot web-server [BCZNB03] 

The application source is again analyzed in order to create the blocking graph that contains 
the information about the places where the threads of the program might block (see Figure 
4). This is a better approach than retaining the instruction pointer of the blocking point 
because the transitions between blocking points allow for better dynamic prediction of the 
system behavior. The blocking graph allows the introduction of another novelty: a system 
resource monitor that keeps track of the past and current CPU, memory and other resources 
utilization (e.g., file descriptors) and tries to predict their future usage level. 

At runtime, the system monitor will dynamically label each edge of the blocking graph with 
the exponentially weighted average time for the transition between the corresponding nodes 
(edge transition time). The nodes will also keep averages for the times spent on the edges 
outgoing from that node and information about resource changes that may indicate if the 
next node will decrease or increase certain resource utilization level. 

Existing event-based system prioritize statically the event handlers and even SEDA [WCB01] 
is limited to event-handler queue length for scheduling the next handler. Capriccio goes 
further with resource aware scheduling based on the information gathered at runtime via the 
resource monitor and the weighted blocking graph. The strategy for optimal performance 
with Capriccio is to increase for each resource its utilization level until it reaches maximum 
performance and then throttle back by scheduling the threads that release that resource. 
When the resource utilization is low, the scheduler executes preferentially the threads that 
use the resource, and the other way around in the case of high utilization, it schedules 
preferentially the threads that release the resource before the ones that use the resource. 

Detecting the maximum utilization level for each resource is however very difficult. With 
Capriccio, the level is determined by heuristics based on number of threads created and 
destroyed, number of files opened and closed, and early signs of thrashing (high page fault 
rate). In the case of normal web applications such as Apache, the procedure is sufficient and 
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assures a high performance level. However, in other cases and especially in multi processor 
systems or with virtual memory on disk this metrics will not predict the best utilization 
levels. 

In addition, as in the case of event-based systems that rely on cooperative multitasking, we 
must detect the points in the program where threads should yield the processor and this is a 
time consuming task. In order to assist the programmer we developed a special profiling tool 
that provides access to internal data such as weighted blocking call. Another possible 
solution not implemented yet is to map the user threads on kernel threads. 

 

6.3 Multi-processor Support 
 
Multi processor systems bring more hardware performance that not always is used by the 
user level software mostly because the atomicity principle at the base of cooperative multi-
threading is no longer valid. The preemptive threading model that applies for the kernel 
threads has to be adapted to the user level threading packages with an M:N mapping that is 
difficult to handle and implement.  

 

6.4 Compiler Assistance 
 
In order to implement a viable high performance user level threading package it is crucial to 
perform compile time code analysis, in order to detect yielding points, stack allocation points 
and blocking calls that must be replaced. All this operations can be done automatically with 
minimal changes to existing compilers or via dedicated tools. Also by code analysis, it may be 
possible to predict certain behavior and make application specific optimizations or CPU 
balancing in the case of multi-processor systems. 

With Capriccio it is possible to perform compiler assisted and feedback based dynamically 
tuning of the threading package via live states regarding stack memory space, wasted stack, 
resource utilization levels, blocking calls path, etc. In the future it is expected to be able to 
generate the weighted blocking graph at compile time and warnings about possible non-
necessary stack allocation for temporary parameters that with minor changes to the 
application algorithm can lead to smaller memory footprint, static detection of possible race 
conditions [BCB03]. 

 

7 Latest Trend 
 
Improvements in the threading packages, kernel threads and kernel to user space “zero-
copy” operations, system calls efficiency for critical performance (accept, select, pool/epool 
etc.) are now a priority for high performance system development. We regard compiler 
assisted code analysis and optimizations as possible future performance improvements 
factors mostly for threaded based designs. 
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More and more systems now use hybrid design models where both events and threads 
coexist in order to benefit from the advantages offered by multi processor and code clarity 
aspects of the threading model and easier memory management without synchronization of 
the event model (e.g., Flash webserver [WCB99]). 

A great deal of work is recently invested in the storage subsystem because having a threading 
or event based system that can open/close 100k connections without being able to sustain 
them has no use. Current approaches are going into reordering random access requests into 
sequential requests from close related regions that can benefit from aggressive pre-fetching 
and disk read ahead internal caching and physical hardware properties, direct storage to 
network kernel operations for sending local files as fast as possible without user level 
overhead, etc. 
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