
Computational Systems Seminar, SS 2004
University of Salzburg, Department of Computer Science
Jakob-Haringer Str. 2, A-5020, Salzburg, Austria

The Context of Capriccio
Scalable Threads for Internet Services

By Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer

1st of July, 2004

Author: Claudiu Farcas
Academic Supervisor: Christoph M. Kirsch

Abstract

The survey covers the context of scalable threads models focusing on their usage for high
performance Internet services and the improvements presented in the user level threading package
Capriccio. It analyses the event vs. threads design methodologies, existing high performance server
architectures, kernel and user level existing threading models and the usage of code analysis and
smart compilers for better system performance.

Table of Contents:

1 Introduction...1
2 Existing Models for High Performance Applications ...1
3 Events Based Model ...4

3.1 Advantages..4
3.2 Disadvantages...5

4 Threads Based Model ...5
4.1 Advantages..6
4.2 Disadvantages...6
4.3 Kernel Threads...7
4.4 User Threads...7

5 Real World Systems ..8
6 Capriccio Approach..9

6.1 Stack Management ...10
6.2 Scheduling ...11
6.3 Multi-processor Support ...13
6.4 Compiler Assistance ..13

7 Latest Trend...13
8 Bibliography...14

1 Introduction

The current demand for high performance computing is pushing the hardware and software
to new limits. The Internet services have and increasing demand for scalability and
availability. More and more content is added online every day and users request for
information is growing exponentially. Economics reasons push the need for automated tools
and faster development of high performance applications such as database and web servers
and web applications. It is becoming more important to get the maximum performance out
of each system and reduce overall costs.

Traditional server-software design methodologies for Internet services such as one process
per connection are doomed nowadays. The servers that hold the information have to deal
with 1k-100k requests per seconds that generate a tremendous load on the application
software, operating system and underlying hardware. For dynamic content not only one
application is involved in producing high performance results but a group of applications.
There are several bottlenecks in a real world information system (web content provider)
composed of a mixed environment of databases, web servers and web applications.
However, generally, the hardware is currently fast enough to meet the requirements of raw
performance but the software is lagging behind.

2 Existing Models for High Performance Applications

The core of a high performance system is the operating system running on the system
hardware and the application that provide the required services. Given the vast range of
operating systems available and applications that provide similar services it is hard to decide,
which solution is better and more important to understand why? However, at a closer look
all systems designs have many common elements and we can group the approaches for high
performance into two classes: events based and threads based.

The two models for developing applications are almost opposite in all aspects. The question
for any given service is which model is better for developing an application for a specific
service? The debates about a specific model are always counter balanced by arguments for
the other model: programming skills required for high performance event based systems are
confronted with easy understanding of threading code, high memory usage of multiple
stacks required for threading are confronted with lightweight memory footprint of event
based programs.

The advantages of one model are almost implicitly disadvantages for the other and debating
on the best model is a long-term battle. However, in an empirical paper published in 1978,
H.C. Lauer and R. M. Needham [LM78] revealed the two models as being duals of each
other and that any system constructed according to a model can have a direct counterpart in
the other model. We notice that the models presented in the paper are idealistic as there is
no real system purely belonging to one class or the other. At lower levels, any given system is
a mix of both models, and only the upper layer belongs to a specific model. Most developers
that believe that a specific model is the solution to all problems generally neglect this aspect.

 1

We can summarize the two models as message oriented and procedure oriented. The
message-oriented system has generally a small number of processes that perform specialized
operations and communicate their results using messages similarly with an assembly pipeline.
The procedure-oriented system has generally many independent general-purpose processes
that perform all operations on the data from the beginning to the end. We can share
common resources between parallel streams of executions (processes or threads) via
synchronizing techniques such as locks, semaphores, monitors, etc.

Figure 1 – Typical concurrency management [AHTBD02]

The behavior of a system designed according to any model has three major aspects:

• Execution time of the algorithms inside the application itself

• Computational overhead of the OS system calls

• Queuing, waiting times for resources that are influenced by external events, and
scheduling decisions.

Changing a system designed according to a model into the other model maintains the code
and execution time of the algorithms inside the application. Presuming that sending a
message with allocation and queue overhead is timely equal with creating a new thread
(forking) that involved similar operations, and watching a semaphore is also equal in time
with waiting for new messages, and process switching and memory allocation is equally fast
on both systems, the system will have identical performance no matter which model is used
for its design. It is possible to adapt applications in order to exploit the benefits of both
systems and avoid common problems by designing hybrid systems where both technologies
can be used for improved performance (see Figure 1).

In the case of similar quality implementations of an application with both models, the only
thing that can influence the performance of a specific model is the platform support. By
platform, we understand the system hardware (CPU, memory architecture, storage
mechanism) and the operating system with specific API and libraries to access the hardware
resources. Some platforms are more adequate for threading models when true concurrency
may benefit from multiple CPUs, others may benefit from the reduced memory footprint of
the event model.

 2

From the platform support point of view, there are at least the following aspects that are
often neglected (“Four Horsemen of Poor Performance” [JD]):

• Data copies

• Context switches

• Memory allocation

• Lock contention

Data copies is generally the biggest performance killer and although most programmers
avoid typical data copying operations there are lots of hidden or non obvious places where
this could happen. An example of this would be a hashing function has all the memory-
access cost of a copy and involves more computation [JD]. The best way to avoid data
copies is to use a level of indirection such as pointers or descriptors (pointer and additional
information needed to operate with the buffer such as length, offset; list pointers for
fwd/back operations in a list). However, in certain cases copying operations are still
unavoidable or even required if the effort to compensate for their effect is much higher (e.g.,
searching through long lists of pointers, breaking up large I/O requests, etc).

Most developers ignore the context switches because they presume that their impact on
overall performance is negligible. This is true for simple applications and low CPU utilization
but completely wrong in the case of high performance systems where not only the concepts
but also their implementation has a great impact on the overall system performance. In the
case of more active threads than actual processors, the increasing number of threads per
processor leads also to an increasing number of context switches, and the system may spend
more time switching between threads than actually executing their instructions. The most
common way to decrease the number of active threads is by using the multiple connections
per thread model (see Section 5). Splitting the server application into several stages such as
listen, work, send results with an appropriate number of threads for each stage will improve
the overall performance of the application and reduce thrashing [WCB01].

Memory management is one of the most common operations in any application, and
contrary to popular beliefs, it is a time consuming task especially in busy systems that have a
highly fragmented memory. One possible solution that may limit the flexibility of an
application is the use of static preallocated memory, and sometimes a clever use of shared
memory space for multiple objects. In addition, we can save frequent used objects (that are
mostly allocated and soon after deallocated) onto a look-aside memory space instead of
destroying them, and with a simple algorithm, we can check their existence before
reallocation. Sometimes contiguous allocated space such as arrays may waste some memory
compared with lists of objects but the access time performance is heavily improved (no need
to walk through the list to find the N-th element). In the case of concurrent access requests
to the same memory object, the locks may prevent one application from benefiting of
concurrency. For a better synchronization that avoids waiting for resource release, we can
use some clever cooperative multitasking technique.

Lock contention is a major problem when dealing with concurrent streams of execution.
There are at least two kinds of locking: lightweight and simple but coarse grained that
serialize the activities that logically are performed in parallel or complex and fine grained that
reorder the requests for a resource for better utilization, loosing some performance with the

 3

scheduling overhead. The right solution for an application is somewhere in between and
finding it is not a trivial task. One possible idea is to build a staged application with separated
data sets and avoid that two requests are in contention unless they are both in the same data
set and in the same processing stage.

There are some other performance factors that have to be considered when choosing the
right design model for an application, most of them deriving from the platform such as:
storage subsystem, network protocol and TCP/IP stack implementation, page and cache
size, signal based wakeup sequences, system calls overhead, etc. An idea is to develop a
micro-benchmark application for that specific platform that measures the performance of
each approach in the most sensitive areas [JD].

3 Events Based Model

The events based systems rely on signaling between different processes to transport data
according to the application algorithm. Each process is handling a specific operation in the
dataflow and we can assimilate the whole process with assembly pipeline. Depending on
implementation, running processes can generate events via signals, messages, pipes, etc.

Generally, an event-based system is composed of an event monitor and some event handlers
that express their interest in certain events. Handlers can be short-lived and running without
preemption in the case of small operations (e.g., interrupt handlers for some I/O devices), or
long-lived when performing time-consuming operations on their input data. In the last case,
we can decrease the system load with cooperative multitasking or balancing on other CPUs.

3.1 Advantages

Most event-based systems have one execution stream and require no true CPU concurrency.
The event monitor loops infinitely waiting for an event to happen and to pass it to the
appropriate handler. We can easily use the idle time for background tasks without fearing
that it may influence the performance of other processes.

There is no need for resource locking or synchronization, and hardly for preemption when
handling one event at a time. This increased the utilization efficiency on single CPU system
because there is no context switch or locking mechanism involved. The timing aspects of an
application are only related to events and not to internal scheduling [Ous96].

The events are perfectly suited for graphic user interfaces and we can use the registration
service provided by the event monitor to enforce security on the application. In such cases,
the handler implements a single behavior such as copy, delete, undo, confirm, etc.

Distributed systems are using the events for handling input data with low overhead. Each
handler is processing an input signal or a chunk of input data and sends immediately a reply
with the results.

 4

3.2 Disadvantages

In the case of long non-uniform handlers running time, when a handler takes a longer time
to execute, the others are blocked and the application may become non-responsive. There
are some workarounds available depending on the target application: start a sub-process to
handle the work and use events just to query its completion, or provide mechanisms for
cooperative multitasking where handlers can yield CPU to each other.

Another solution would be splitting a workload in several handlers and add completion
events between different stages. However, as there is no state maintained between events (a
handler must return) this makes implementation much harder and the internal algorithm
becomes hard to understand, and in some cases very complicated.

The most common problem with events is the "stack-ripping" phenomenon [AHTBD02].
At each point that a blocking call could occur, the developer has to rip apart the stack and
create a closure invoked via callback. This procedure obscures the intent of the program and
makes maintenance or extension hardly possible. It also applies for saving live state of an
event handler when the programmer has to keep track of all pairs call/return.

In some cases event driven I/O is not possible because of poor buffering or lack of OS
facilities (e.g., async I/O) or CPU concurrency with task/handler preemption.

4 Threads Based Model

A thread-based system relies on multiple independent instances of a procedure regarded as
execution streams that work using the same algorithm on similar data to achieve higher
processing throughput. The threading model derives from the process model for true
concurrency and takes advantage of multiple CPUs in high-end systems. The initial
implementations consisted of lightweight processes that share some common data in user
space.

The threading model fits well a variety of applications and is regarded as a solution to benefit
from the real performance of a system. A single threaded application that requires more
performance can be easily extended by creating multiple threads that perform the major
operations in parallel. In the case of multi-CPU systems, we gain increased performance with
little effort. Using the POSIX standard for development will also make platform migration
easier.

There are two mapping alternatives for implementing threads in an operating system:

• 1:1 - easier and more efficient scheduling for one kernel thread per one user thread
proved to be the fastest approach

• M:N – closer to logical programming model but the asymmetric distribution of user
threads on kernel threads has complexity problems, requires more resources and the
overall performance is lower than 1:1.

 5

4.1 Advantages

Threads are generally more powerful than events and closer to the parallel applications. The
concurrency in modern server application generally starts from independent requests, and
similar pieces of code handle them in parallel. The algorithm behind an application and the
data flow is easier to understand as the programmer does not need care about transferring
states between different parts of the application (e.g., between different methods
implemented in separated modules) that implement successive operations. This way a
threaded application can have long-lived stateful handlers without blocking. Shared data
allows for fast global configuration and easy access to common resources that are crucial for
database applications.

With preemptive scheduling and independent execution, threading systems can handle
overlapping requests and perform concurrent I/O. It is possible to implement dedicated
threads for each operation that can be a bottleneck for the system such as disk operations or
network communication. We can split the application into multiple parallel working threads
and a couple of interfacing threads that communicate with the environment (fetching input
data, storing, communicating results).

We can avoid the common problems with stack allocation and scheduling by using smart
compilers and code analysis. Stack space can be fragmented into linked blocks and allocated
on demand by checking the requirements of the application in advance (at compile time or
during runtime). With resource monitoring it is possible to avoid long stalls for resources
and thrashing [BCZNB03].

4.2 Disadvantages

Earlier implementations based on lightweight processes were slow and required large
amounts of memory to operate. In addition, the available process IDs were running to their
limits relatively soon. It was impossible to create and operate thousands of threads because
of scheduler overhead and memory resources.

Accessing shared data requires synchronization, and the locking mechanism severely
diminishes the true concurrency aspects of the threading programming model. However,
without synchronization, the threads that access some common resources can generate race
conditions and may easily corrupt data.

Using locking mechanism can lead to deadlocks when a circular dependency between threads
appears during the application execution. With simple locking by monitoring the availability
of a resource, the true concurrency benefits are lost. Fine-grained locking mechanisms may
improve application performance but may increase system load because of scheduling and
context switching additional overhead [Ous96].

It is hard to design independent modules that communicate efficiently because one thread
deadlock can lead to unpredictable behavior of the following module. Debugging threading
systems is hard because of data dependencies and timing issues.

 6

Porting threads based applications to different platforms (e.g., UNIX to Windows) is
difficult without a common API interface. Also standard libraries are not thread safe on all
platforms and can lead to unpredictable behavior of the application.

Stack allocation for each thread can lead to high memory consumption and thrashing. Early
implementations allocate fixed size stack space for each thread even if the stack
requirements for that thread were minimal. The address space in this case is wasted on most
32-bit processors.

4.3 Kernel Threads

The kernel threads are the lowest level of parallel streams of execution integrated directly
into the core of the operating system. Here there are the benefits of true concurrency and
multi-processor support, direct access to hardware resources and OS internals. Their usage is
mostly for concurrent processing of kernel jobs and separating several possible bottlenecks
such as disk I/O and network communication.

However, the kernel threads are highly platform dependent and hardly portable.
Programming kernel threads is generally difficult and debugging can be a problem because
all operations are in kernel space and deadlocks can lead to complete system locking. Errors
in memory allocation or code can lead to unpredictable behavior and system crashes. Most
upgrades in the internal algorithms and other improvements are only possible with kernel
upgrades that generally require an expensive restarting of the whole system.

4.4 User Threads

We see the user threads as a portable way to handle concurrency in most operating systems.
There are many threading packages available for most operating systems and that can be
changed on the fly without any side effect on the operating system’s behavior. The OS does
not need to be upgraded in order to support certain threading package or application.
However, direct access to OS structures and scheduling is slower than with the kernel
threads.

The cleaner programming model, and total logical decoupling from the kernel threads,
makes them the most used threading model for highly concurrent applications. The resulting
code is generally highly portable and flexible to adapt to various user-level threading
packages.

With the various approaches in implementing a high performance user level threading
package it is generally easier to use the latest enhancements and state of the art technology
with an application than to wait for their integration into the next stable version of the
operating system.

The use of user level threads reduces kernel mode switching and kernel-memory utilization.
We can improve their scheduling according to the application logic by code analysis and
smart compilers. This can also lead to better memory management that fits the application’s
needs with very low overhead.

 7

However, the blocking system calls present in the application code may stall the entire
execution of all tasks. Existing high performance threading packages such as Filaments
[PG95] are still slow at dealing with a large number of blocking calls. For a fast recovery
from this problem, we must convert all the blocking system calls to non-blocking equivalents
that pool the resource to check its availability and perform the requested system call only
when this will result in an immediate return. The additional work for this task (all user code
must be generally parsed) can be mostly automated but it depends on special code analyzers
and smart compilers to perform the additional changes needed.

In addition, the true concurrency support of the kernel threads is mostly lost and there is
hardly a benefit from multi processor systems. Mapping of user level threads to kernel
threads decreases the performance of the application and the existence of two schedulers for
the same purpose (for kernel and user threads) introduces additional overhead. The cache
memory footprint of the application is increased and there will be more hardware stalls for
fetching new instructions and data from the main memory.

The scheduling of user threads is generally non-preemptive and the compiler must provide
some sort of cooperative scheduling in order to emulate concurrency. Each thread has to
yield periodically the CPU to other threads. In some cases when some threads contain CPU
intensive operations this can result to stalls for the other threads.

Handling precompiled libraries or static compiled applications is difficult as there is no
information about the internal policy for scheduling, their stack allocation requirements or
other common resources. Also keeping in sync with kernel development is required in order
to allow seamless compilation of the application with new operating system releases. This is
not always possible and requires sometimes adaptations to the program source code [ST].

5 Real World Systems

The existing high performance systems involve a variety of technologies for handling
multiple clients in an economic way. These include multiple concurrent execution streams
such as multi-process (MP) and multi-threaded (MT), event based such as single process
event-driven (SPED) and even a hybrid approach: asymmetric multi-process event-driven
(AMPED) architecture.

The multi-process or multi-threaded models are using generally the same design
methodology based on multiple concurrent streams of execution with minor differences in
the way data is passed between processing units (for processes there is no need for
synchronization mechanisms on data access as each one has its own private memory space),
and resource management. By default for each new connection, a new thread or process is
created and the connections are multiplexed by context switching between the units that
cannot continue because of blocking and the ones that still can process data. Both models
can benefit from OS support for overlapping disk activity and fast network processing, but
also inherit performance hits because of context switching, forking a new thread/process
overhead, inter process communication respectively synchronization delays.

When using the one thread per connection model the increasing number of active threads
per processor will lead to an increased number of context switches that will severely

 8

diminish the performance of the system. Limiting the number of active threads to the actual
number of available processors in a system is a possible solution to this problem but the
typical limitation of only one active thread will prevent the utilization of other CPUs and the
application will become mostly network bounded. The well-known Apache webserver that
handles currently most web sites worldwide evolved from the MP to MT model with
minimal performance improvements mostly because of existing threading implementations.
Another example is the lightweight Knot-C webserver [BCB03].

The SPED architecture relies on multiple independent stages of execution, activated by an
event dispatcher. It handles a connection by passing the data through all necessary stages
and requiring no context switching or synchronization. Typical implementation uses
generally a single process along with non-blocking I/O and an event notification system
based on primitives such as select or pool that determines when the corresponding system
call (e.g., for network read/write) will execute without blocking. For multi-processor
systems, running multiple SPED servers in parallel takes advantage of the additional
hardware performance and provides excellent results. An example lightweight system based
on SPED is the µServer [BO01] that in addition uses the multi-accept procedure [CM01] to
drain the accept queue before performing the work for each connection.

The AMPED architecture used by Flash webserver [PDZ99] consists of several helper
processes that perform most time consuming disk I/O operations on behalf of the mail
event driven process that uses the SPED approach. The result is a fast webserver that
outperforms most MP or MT based web servers.

6 Capriccio Approach

We designed Capriccio as a high performance lightweight user level threading system trying
to overcome the previous drawbacks of similar threading packages. It scales well up to 100
thousands threads and aims for POSIX compliance for easy integration with existing
applications. It also features cooperative scheduling, asynchronous I/O operations, linked
stack management for reduced stack space and resource aware scheduling. Most of these
features are available via code analysis, automatic source changes and compiler
optimizations.

The Capriccio threading system comes to prove that threading model is adequate for high
performance computing (in this case internet services) but the problem that prevented its
high scale usage is the poor implementation of current threading packages [BCB03]. By
reducing the common O(n) operations in the scheduler and minimizing the number of
context switches and additional kernel crossing it can match the performance of event based
systems.

The linear control flow introduced by threads is not regarded as a limitation but a natural
way of thinking and easier programming. The event-based systems have the possibility to
implement any kind of control flow but in practice, applications use the same call/return
mechanisms available with threads.

Synchronization problems inherent to any threading system can benefit of cooperative
multitasking on single processor systems in the same way as the event based systems. In

 9

addition, the scheduling advantage at application level of the event-based systems can be
applied to the virtual processor model of the threading system.

6.1 Stack Management

A common problem when using threads is stack allocation. As each thread corresponds to
an execution stream, we can consider it as an independent program and apply regular stack
allocation policies similar with any other process of the system. This however leads to
wasted address and memory space that can rapidly decrease the system performance.

Typical implementations on Linux allocated 2MB of stack space for each user thread.
Handling just 1000 connections required more memory and address space than most
computers had at that time. Other approaches used in languages such as Olden are using the
concept of “spaghetti stacks” [BW73] - where multiple environments share a common stack
subdivided in sub-stacks that are interleaved, or “stacklets” [GSC95, CB01] - that are
allocated at runtime based on previous code analysis. It is possible not to use any stack at all
with kernel threads [DBRD91] by packaging the entire state in a dedicated memory block in
a similar way with the stack ripping mechanism used in the event model [AHTBD02].

Capriccio uses a better approach by splitting the stack space in small chunks that are
allocated gradually on demand. In order to detect when a new stack chunk is needed the
application source code is parsed to detect the best place to insert new stack allocation
points. In this process, we create a weighted call graph where nodes represent the function
calls of the application weighted by the amount of stack space required for a single stack
frame that the function consumes, and the edges represent the logical flow of operations.

Figure 2 - Call graph annotated with stack frame sizes [BCZNB03]

Any path in this graph will correspond to a possible trace during the program execution and
the sum of weights along the path will be equal with the total stack space required (see
Figure 2). However, for most programs using recursion of function pointers it is not
possible to detect at compile time the maximum stack space required during the execution of
the program. This requires dynamic allocation and release of stack frames based on the
evolution of the program. Capriccio executes all these operations in LIFO order allowing the
application to reuse memory space and diminishing the overall memory consumption of the
application.

 10

Figure 3 – Dynamic allocation/deallocation of stack frames [BCZNB03]

The checkpoints for inserting the stack management code are detected by performing a
depth first search in the weighted call graph. Inserting checkpoints or stack management
code before each call leads to low performance. The idea is to minimize the number of
checkpoints and allocate at each checkpoint the right amount of stack space that will suffice
until the program reaches another checkpoint. For recursive programs there are loops in the
call graph that must be broken by inserting a compulsory checkpoint. In some cases, a small
amount of stack space is wasted between successive checkpoints but this is a tradeoff for
increased speed. Accessing the stack requires synchronization that Capriccio accomplishes
via cooperative threading.

In the case of function pointers or external functions from precompiled libraries, it is not
possible to detect the requirements of stack space in the weighted call graph. The solution in
this case is to annotate the library or each possible function with an estimation of the
amount of stack space required. This can be determined experimental via profiling tools but
will not guarantee the behavior of the application.

This approach of dealing with the stack problem has a number of memory related
advantages such as reduced stack footprint and virtual address space when running a large
number of threads, reuse of memory space via dynamic LIFO allocation / deallocation
mechanism that does not require a garbage collector. We also gain improved speed
compared with traditional dynamic allocation on call and contiguous allocation at startup
(performing malloc on fragmented memory space is expensive).

The disadvantages are coming from the additional step required to detect the right places for
inserting the stack management code and library annotation in the case of precompiled
libraries. However, most of these tasks can be fully automated and possibly integrated
directly into compiler.

6.2 Scheduling

Scheduling the user level threads is problematic because when one thread calls a blocking
system call the whole application will stop waiting for that system call to return. There is no
preemption at user level code, and the only solution available is to use cooperative
multitasking between threads. For the case of blocking system calls Capriccio introduces a
novelty: an event monitor that transparently watches for the availability of each resource

 11

needed and then performs the blocking system call. Although similar approaches were
already described [FCEZ03], the Capriccio implementation is purely at user level and
handles better the information gathered by monitoring the resource utilization level.

With this approach, all blocking system calls are rewritten at library level (libc 2.2 in
Capriccio’s case) and replaced with a call to the event monitor that yields the CPU to
another thread preventing the overall stall. Only the thread that originally performed the
system call will block until the result is available, and the remaining threads will successively
yield the CPU generally in a round robin fashion.

Figure 4 – Sample blocking graph for the Knot web-server [BCZNB03]

The application source is again analyzed in order to create the blocking graph that contains
the information about the places where the threads of the program might block (see Figure
4). This is a better approach than retaining the instruction pointer of the blocking point
because the transitions between blocking points allow for better dynamic prediction of the
system behavior. The blocking graph allows the introduction of another novelty: a system
resource monitor that keeps track of the past and current CPU, memory and other resources
utilization (e.g., file descriptors) and tries to predict their future usage level.

At runtime, the system monitor will dynamically label each edge of the blocking graph with
the exponentially weighted average time for the transition between the corresponding nodes
(edge transition time). The nodes will also keep averages for the times spent on the edges
outgoing from that node and information about resource changes that may indicate if the
next node will decrease or increase certain resource utilization level.

Existing event-based system prioritize statically the event handlers and even SEDA [WCB01]
is limited to event-handler queue length for scheduling the next handler. Capriccio goes
further with resource aware scheduling based on the information gathered at runtime via the
resource monitor and the weighted blocking graph. The strategy for optimal performance
with Capriccio is to increase for each resource its utilization level until it reaches maximum
performance and then throttle back by scheduling the threads that release that resource.
When the resource utilization is low, the scheduler executes preferentially the threads that
use the resource, and the other way around in the case of high utilization, it schedules
preferentially the threads that release the resource before the ones that use the resource.

Detecting the maximum utilization level for each resource is however very difficult. With
Capriccio, the level is determined by heuristics based on number of threads created and
destroyed, number of files opened and closed, and early signs of thrashing (high page fault
rate). In the case of normal web applications such as Apache, the procedure is sufficient and

 12

assures a high performance level. However, in other cases and especially in multi processor
systems or with virtual memory on disk this metrics will not predict the best utilization
levels.

In addition, as in the case of event-based systems that rely on cooperative multitasking, we
must detect the points in the program where threads should yield the processor and this is a
time consuming task. In order to assist the programmer we developed a special profiling tool
that provides access to internal data such as weighted blocking call. Another possible
solution not implemented yet is to map the user threads on kernel threads.

6.3 Multi-processor Support

Multi processor systems bring more hardware performance that not always is used by the
user level software mostly because the atomicity principle at the base of cooperative multi-
threading is no longer valid. The preemptive threading model that applies for the kernel
threads has to be adapted to the user level threading packages with an M:N mapping that is
difficult to handle and implement.

6.4 Compiler Assistance

In order to implement a viable high performance user level threading package it is crucial to
perform compile time code analysis, in order to detect yielding points, stack allocation points
and blocking calls that must be replaced. All this operations can be done automatically with
minimal changes to existing compilers or via dedicated tools. Also by code analysis, it may be
possible to predict certain behavior and make application specific optimizations or CPU
balancing in the case of multi-processor systems.

With Capriccio it is possible to perform compiler assisted and feedback based dynamically
tuning of the threading package via live states regarding stack memory space, wasted stack,
resource utilization levels, blocking calls path, etc. In the future it is expected to be able to
generate the weighted blocking graph at compile time and warnings about possible non-
necessary stack allocation for temporary parameters that with minor changes to the
application algorithm can lead to smaller memory footprint, static detection of possible race
conditions [BCB03].

7 Latest Trend

Improvements in the threading packages, kernel threads and kernel to user space “zero-
copy” operations, system calls efficiency for critical performance (accept, select, pool/epool
etc.) are now a priority for high performance system development. We regard compiler
assisted code analysis and optimizations as possible future performance improvements
factors mostly for threaded based designs.

 13

More and more systems now use hybrid design models where both events and threads
coexist in order to benefit from the advantages offered by multi processor and code clarity
aspects of the threading model and easier memory management without synchronization of
the event model (e.g., Flash webserver [WCB99]).

A great deal of work is recently invested in the storage subsystem because having a threading
or event based system that can open/close 100k connections without being able to sustain
them has no use. Current approaches are going into reordering random access requests into
sequential requests from close related regions that can benefit from aggressive pre-fetching
and disk read ahead internal caching and physical hardware properties, direct storage to
network kernel operations for sending local files as fast as possible without user level
overhead, etc.

8 Bibliography

[AHTBD02] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, J. R. Douceur. Cooperative

Task Management Without Manual Stack Management (or, Event-driven
Programming is Not the Opposite of Threaded Programming). In Proc. of the
2002 Usenix ATC, 2002

[BCB03] R. Behren, J. Condit, E. Brewer. Why Events Are a Bad Idea (for high-
concurency servers). In Proc. of HotOS IX, Hawaii, 2003

[BCZNB03] R. Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio:
Scalable Threads for Internet Services. In Proc. of the 19th Symposium on
Operating System Principles (SOSP-19), New York, 2003

[BO01] T. Brecht, M. Ostrowski. Exploring the performance of select-based Internet
servers. TR HPL-2001-314, HP Labs, 2001.

[BW73] D. G. Bobrow, B. Wegbreit. A Model and Stack Implementation of Multiple
Environments. Communications of the ACM, 1973

[CB01] P. Cheng, G. E. Blelloch. A Parallel, Real-Time Garbage Collector. In Proc. of
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2001.

[CM01] A. Chandra, D. Mosberger. Scalability of Linux event-dispatch mechanisms. In
Proc. of the 2001 USENIX Annual Technical Conference, Boston, 2001.

[DBRD91] R. P. Draves, B. N. Bershad, R. F. Rashid, R. W. Dean. Using Continuations
to Implement Thread Management and Communication in Operating Systems.
In Proc. of the 13th ACM Symposium on Operating Systems Principle, ACM
SIGOPS, 1991.

[DK] Dan Kegel’s The C10K problem: http://www.kegel.com/c10k.html

[FCEZ03] R. Fowler, A. Cox, S. Elnikety, W. Zwaenepoel. Using Performance Reflection
in Systems Software. In Proc. of the 2003 HotOS Workshop, 2003.

[GSC95] S. C. Goldstein, K. E. Schauser, D. E. Culler. Lazy Threads, Stacklets, and
Synchronizers: Enabling Primitives for Compiling Parallel Languages. In Third

 14

Workshop on Langauges, Compilers, and Run-Time Systems for Scalable
Computers, 1995.

[JD] Jeff Darcy's online notes on high-performance server design strategies:
http://pl.atyp.us/content/tech/servers.html

[LN78] H. C. Lauer, R. M. Needham. On the Duality of Operating System Structures.
In Proc. Second International Symposium on Operating Systems, IR1A, 1978

[Ous96] J. Ousterhout. Why Threads Are a Bad Idea (for most purposes). USENIX
Technical Conference, 1996

[PDZ99] V. S. Pai, P. Druschel, W. Zwaenepoel. Flash: An efficient and Portable Web
Server. In Proc. of the USENIX 1999 Annual Technical Conference,
California, 1999

[PG95] W. Pang, S.D. Goodwin. An Algorithm for Solving Constraint-Satisfaction
Problems. TR 95-04, ISBN 0-7731-0302-3, 1995

[ST] State Threads: http://state-threads.sourceforge.net/docs/st.html

[WCB01] M. Welsh, D. E. Culler, E. A. Brewer. SEDA: An architecture for well-
conditioned, scalable Internet services. In Symposium on Operating Systems
Principles, 2001

 15

	Introduction
	Existing Models for High Performance Applications
	Events Based Model
	Advantages
	Disadvantages

	Threads Based Model
	Advantages
	Disadvantages
	Kernel Threads
	User Threads

	Real World Systems
	Capriccio Approach
	Stack Management
	Scheduling
	Multi-processor Support
	Compiler Assistance

	Latest Trend
	Bibliography

