

Composable Code
Generation for
Distributed Giotto

Tom Henzinger, Christoph Kirsch, and Slobodan Matic

presented by Rainer Trummer

Compositionality Seminar WS 2007

Department of Computer Sciences

University of Salzburg

Motivation

 Automotive software
 Suppliers develop software components
 Manufacturer integrates components

 Mass production: optimality

 Compositional design
 Scale down problem
 Reuse components

 Preserve desired properties by composition

Real Time + Composability

 Giotto framework
 Purely software time-triggered paradigm
 Concurrency abstraction: Logical Execution Time
 Enables compositional design of hard real-time systems

 Distributed platform
 Realized by distributed compilation of components
 Individually compiled components merged to final program

 Merge & Verification
 Automatic check if components meet specification

Giotto Framework

 Task instance
 Period defines start and stop times
 Output available at stop time

mode m1() period 8
{
 actfreq 2 do MixPlayer();
 taskfreq 1 do Analyzer(Mixer);
 taskfreq 2 do Mixer(Generator);
 taskfreq 1 do Generator();
}

0 84

Analyzer

Mixer

Generator

 Giotto program
 Executes a periodic set of LET tasks
 Set of tasks and periods may change upon mode switches

Giotto Abstraction

Giotto Implementation

 Embedded Machine - E code
 Environment interaction
 Task release

 Scheduling Machine - S code
 Task execution
 Communication schedule

E and S Machine

Es,h(m1, 0):
call(copy[MixSound])
call(copy[StringSound])
release(1; Mixer; 1)
release(1; [MixSound])
future(4, Es,h(m1, 1))

Ss,h(m1, 0):
idle(1)
call(InDrv2)
dispatch(Mixer; 2)
idle(3)
dispatch([MixSound]; 4)

Schedule-Carrying Code

Distributed Compilation

Distributed Code Generation

Distributed Code Generation
Step 1

Distributed Code Generation
Step 2

Distributed Code Generation
Step 3

Distributed Code Generation

 Supplier s on host h gets

 Component specification
 E code module Es,h

 Timing interface
 Set of time intervals Ts,h

 where s may use h
 where s may send

 Integrator ensures interface feasibility

Specification

Es,h(m1, 0):
call(copy[MixSound])
call(copy[StringSound])
release(1; Mixer; 1)
release(1; [MixSound])
future(4, Es,h(m1, 1))

0

22 ,hsT

2 3

23 ,hsT

1

11,hsT

4

 Integrator receives

 S code module Ss,h

 Even with interfaces EDF optimal

 Task Implementation
 Usually written in different language

 Merged SCC module
 Time-safe if no driver accesses a released task before

completion
 Complies with timing interface if all tasks executed in time

intervals

Integration

Ss,h(m1, 0):
idle(1)
call(InDrv2)
dispatch(Mixer; 2)
idle(3)
dispatch([MixSound]; 4)

Verification

 Giotto program G
 n : bound on all numbers in G
 gs,h : size of Giotto component implemented by

 supplier s on host h

 Correctness
To check if a distributed SCC program P correctly
implements Giotto program G it is enough to check

 if each Ps,h complies to Ts,h and is time-safe

 Complexity
If a given Ps,h complies to Ts,h and is time-safe can be
checked in

O(gs,h n) time

 Module modification
 Interaction - Es,h

 Schedule - Ss,h

 Duration - wcet

Verification

O(gs,h n)

 PCs running RT-Linux, Ethernet
 TDMA on top of software-based synchronization, 2.86Mb/s
 Every 4ms 44 samples (11kHz) processed and transmitted
 Overhead 3.7%: synchronization 25µs, virtual machine 12µs

Implementation
 Distributed audio mixer application

 File read, processed, analyzed, and reproduced
 Two hosts and three suppliers

Conclusions

 Timing interfaces
 Used to distribute code generation for Giotto programs

and distributed target platforms

 Component integration
 Performed by individually checking interface compliance

and time safety of each component

 Timing requirements
 Guaranteed without solving scheduling problem: burden is

shifted to generation of timing interfaces

