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Motivation

Modular Performance Analysis and Design Space Exploration
of Distributed Embedded Systems

System complexity is increasing, a few domains:

• Networks of sensors and actuators

• Building automation

• Car communication

• Environmental monitoring

• ...
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Motivation

Fundamental problems:

• Handling non-functional and resource constraints

• Design under multiple conflicting criteria
• Performance vs power consumption
• Data throughput vs error rate
• ...

• Trade-off between average performance and predictability
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Motivation

Modular Design Strategies



Introduction Real-Time Calculus Conclusion

Motivation

Modular Design Strategies – Vision

Finite resources

• Buffer space

• Energy

• Communication

• Processing power

• Time

• ...

Requirements:

• Distributed systems

• Need for run-time adaptability

• Allow for guarantees
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Real-Time Calculus

In a Nutshell

• Deterministic queueing theory

• Hard upper and lower bounds are always found

• No insight into average load of a system

• Extension of Network Calculus (R. L. Cruz, 1991)
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Real-Time Calculus
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Real-Time Calculus

Relationship

Network Calculus

• Time (absolute)

• Cumulative Function

• Event stream R(t)

• Resources C (t)

Real-Time Calculus

• Interval size ∆ (relative time)

• Arrival Curve

• Event curve αl , αu

• Resource curve βl , βu
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Real-Time Calculus

• Nodes are modeled as pure mathematical functions

• Computation resources: CPU cycles

• Communication resources: Transported number of bits



Introduction Real-Time Calculus Conclusion

Real-Time Calculus
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Real-Time Calculus

Proposition 1: Basic Model For a processing node characterised
by the capacity function C (t) and the incoming requests function
R(t) we have C ′(t) = C (t)− R(t) and

R ′(t) = min
0≤u≤t

{R(u) + C (t)− C (u)}
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Real-Time Calculus

Bounds

Proposition 2: Request Curve For a given request function R,
the minimum request curve αr can be calculated as

αr = max
u≥0
{R(∆ + u)− R(u)}

Proposition 3: Delivery Curve For a given capacity function C ,
the maximum delivery curve β can be calculated as

β = min
u≥0
{C (∆ + u)− C (u)}
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Real-Time Calculus

Processing of Bounds

Proposition 4: Remaining Delivery Curve Given request and
capacity functions R and C , bounded by the request and delivery
curves αr and β respectively, C ′ according to Prop. 1 is then
bounded by the delivery curve

β′(∆) = max
0≤u≤∆

{β(u)− αr (u)}

Proposition 5: Delivered Computation Bounds Given request
and capacity functions R and C , bounded by the request and
delivery curves αr and β respectively, R ′ according to Prop. 1 is
then bounded by the request curve

α′(∆) = max
u≥0
{αr (∆ + u)− β(u)}
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Real-Time Calculus

Calculation of Bounds

c.f. S. Baruah, 1998

• Task graph: DAG with unique
source and sync vertex

• Vertex u is subtask

• Associated with pair (e(u), d(u))

• Requires e(u) time, finishes d(u)
after being triggered

• Directed edge (u, v) is control flow

• p(u, v) is min time before v can be
triggered
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Real-Time Calculus

Calculation of Bounds

Lj+1 = (e(j + 1), d(j + 1))
for each edge (k, j + 1) do
for each tuple (f ,∆) ∈ Lk do
Lj+1∪
{(f + e(j + 1),∆ + p(k , j + 1)

+d(j + 1)− d(k))}
L(j + 1) = Lj+1 ∪ L(j)
Reduce sets L(j + 1) and Lj+1

• Incremental algorithm

• Li set of tuples (f ,∆)

sequences of executions

i is last subtask

• L(i) list of tuples

subtasks up to, including i

Reduce removed tuples with less restrictive bounds
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Real-Time Calculus

Theorem 1 Given a task graph of n vertices, αd(∆) can be
computed in O(n3) time if the execution times of the subtasks are
equal, and in general it can be computed in pseudo-polynomial
time.
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Real-Time Calculus

Proposition 6: Schedulability Test The capacity offered by a
task Ti can be described by the remaining delivery curve β′

according to Prop. 4 where αr =
∑i−1

j=1. Task Ti meets all its
deadlines if

(∀∆)(β′(∆) ≥ αi
d(∆))
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Conclusion

• Terse but concise paper

• Key contribution is algorithm in polynomial time

• Critique: request/arrival model and task graph model could
be integrated better
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