▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Real-Time Calculus for Scheduling Hard Real-Time Systems

Lothar Thiele, Samarjit Chakraborty and Marting Naedele ETH Zürich Presented by Robert Staudinger University of Salzburg

December 20, 2007

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Modular Performance Analysis and Design Space Exploration of Distributed Embedded Systems

System complexity is increasing, a few domains:

- Networks of sensors and actuators
- Building automation
- Car communication
- Environmental monitoring

• ...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Fundamental problems:

- Handling non-functional and resource constraints
- Design under multiple conflicting criteria
 - Performance vs power consumption
 - Data throughput vs error rate
 - ...
- Trade-off between average performance and predictability

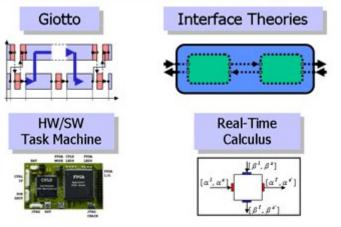
Real-Time Calculus

Conclusion

Motivation

Modular Design Strategies

Predictable Wireless Embedded Systems



Real-Time Calculus

Conclusion

Motivation

Modular Design Strategies – Vision

Finite resources

- Buffer space
- Energy
- Communication
- Processing power
- Time
- ...

Requirements:

- Distributed systems
- Need for run-time adaptability

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Allow for guarantees

Real-Time Calculus

Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

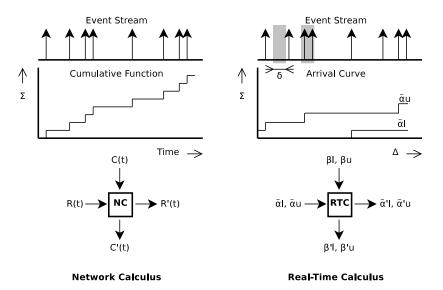
Real-Time Calculus

In a Nutshell

- Deterministic queueing theory
- Hard upper and lower bounds are *always* found
- No insight into average load of a system
- Extension of Network Calculus (R. L. Cruz, 1991)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Real-Time Calculus



Real-Time Calculus

Conclusion

Real-Time Calculus

Relationship

Network Calculus

- Time (absolute)
- Cumulative Function
- Event stream R(t)
- Resources C(t)

Real-Time Calculus

• Interval size Δ (relative time)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Arrival Curve
- Event curve α_I, α_u
- Resource curve β_I, β_u

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Real-Time Calculus

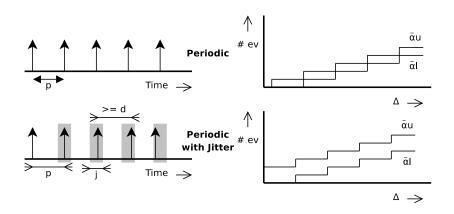
- Nodes are modeled as pure mathematical functions
- Computation resources: CPU cycles
- Communication resources: Transported number of bits

Real-Time Calculus

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Real-Time Calculus



Real-Time Calculus

Conclusion

Real-Time Calculus

Proposition 1: Basic Model For a processing node characterised by the capacity function C(t) and the incoming requests function R(t) we have C'(t) = C(t) - R(t) and

$$R'(t) = \min_{0 \le u \le t} \{R(u) + C(t) - C(u)\}$$

Real-Time Calculus

Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Real-Time Calculus

Bounds

Proposition 2: Request Curve For a given request function R, the minimum request curve α_r can be calculated as

$$\alpha_r = \max_{u \ge 0} \{ R(\Delta + u) - R(u) \}$$

Proposition 3: Delivery Curve For a given capacity function *C*, the maximum delivery curve β can be calculated as

$$\beta = \min_{u \ge 0} \{ C(\Delta + u) - C(u) \}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Real-Time Calculus

Processing of Bounds

Proposition 4: Remaining Delivery Curve Given request and capacity functions R and C, bounded by the request and delivery curves α_r and β respectively, C' according to Prop. 1 is then bounded by the delivery curve

$$\beta'(\Delta) = \max_{0 \le u \le \Delta} \{\beta(u) - \alpha_r(u)\}$$

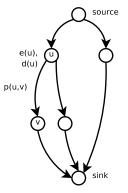
Proposition 5: Delivered Computation Bounds Given request and capacity functions R and C, bounded by the request and delivery curves α_r and β respectively, R' according to Prop. 1 is then bounded by the request curve

$$\alpha'(\Delta) = \max_{u \ge 0} \{ \alpha_r(\Delta + u) - \beta(u) \}$$

Conclusion

Real-Time Calculus

Calculation of Bounds



Task Graph with Conditional Branches

c.f. S. Baruah, 1998

- Task graph: DAG with unique source and sync vertex
- Vertex *u* is subtask
- Associated with pair (e(u), d(u))
- Requires e(u) time, finishes d(u) after being triggered
- Directed edge (u, v) is control flow
- *p*(*u*, *v*) is min time before *v* can be triggered

Conclusion

Real-Time Calculus

Calculation of Bounds

$$\begin{split} L^{j+1} &= (e(j+1), d(j+1)) \\ \text{for each edge } (k, j+1) \text{ do} \\ \text{for each tuple } (f, \Delta) \in L^k \text{ do} \\ L^{j+1} \cup \\ &\{ (f+e(j+1), \Delta + p(k, j+1) \\ &+ d(j+1) - d(k)) \} \\ L(j+1) &= L^{j+1} \cup L(j) \\ \text{Reduce sets } L(j+1) \text{ and } L^{j+1} \end{split}$$

- Incremental algorithm
- Lⁱ set of tuples (f, Δ) sequences of executions
 - i is last subtask
- *L*(*i*) list of tuples subtasks up to, including *i*

Reduce removed tuples with less restrictive bounds

Real-Time Calculus

Conclusion

Real-Time Calculus

Theorem 1 Given a task graph of *n* vertices, $\alpha_d(\Delta)$ can be computed in $O(n^3)$ time if the execution times of the subtasks are equal, and in general it can be computed in pseudo-polynomial time.

Real-Time Calculus

Conclusion

Real-Time Calculus

Proposition 6: Schedulability Test The capacity offered by a task T_i can be described by the remaining delivery curve β' according to Prop. 4 where $\alpha_r = \sum_{j=1}^{i-1}$. Task T_i meets all its deadlines if

 $(\forall \Delta)(\beta'(\Delta) \ge \alpha_d^i(\Delta))$

Real-Time Calculus

Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusion

- Terse but concise paper
- Key contribution is algorithm in polynomial time
- Critique: request/arrival model and task graph model could be integrated better