Periodic Resource Model for Compositional Real-Time Guarantees

Insik Shin and Insup Lee in RTSS'03

presented by Harald Röck

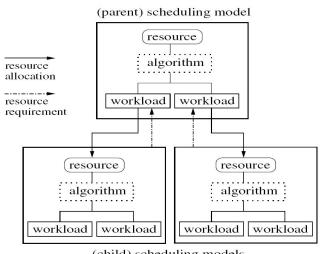
University of Salzburg, Department of Computer Sciences

8. November 2007

Outline

- Introduction
- Periodic Resource Model
- Schedulability Analysis
- Schedulability Bounds
- 5 Compositional Real-Time Guarantees

Introduction



(child) scheduling models

System Model

- Scheduling Model M = (W, R, A)
 - W the workload model set
 - R the resource model
 - A the scheduling algorithm
- Limitations:
 - Periodic tasks, i.e., T(p, e)
 - Tasks are independent and preemptive
 - Scheduling algorithms are limited to EDF and RM

System Model

- Scheduling Model M = (W, R, A)
 - W the workload model set
 - R the resource model
 - A the scheduling algorithm
- Limitations:
 - Periodic tasks, i.e., T(p, e)
 - Tasks are independent and preemptive
 - Scheduling algorithms are limited to EDF and RM

Definition

A scheduling model M(W, R, A) is *schedulable* if a set of periodic workloads W is schedulable under a scheduling algorithm A with a partitioned resource R.

Existing Resource Models

Definition

Fractional resource $R_F(U_F)$: resource R is always available but only at a fractional capacity of U_F

Existing Resource Models

Definition

Fractional resource $R_F(U_F)$: resource R is always available but only at a fractional capacity of U_F

Definition

Bounded-delay resource partition model $R_B(U_B, D_B)$: resource R is available at its full capacity at some times but not available at the other times. U_B is the availability factor (rate), and D_B measures the largest deviation of a partition on any time interval.

Example

Two periodic tasks

- Two periodic tasks $T_1(7,3)$ and $T_2(21,1)$
- EDF scheduling algorithm
- Partitioned resource R is available 3 time units every 5 time units
- From Definitions 4 and 7 in [5], $R_B(U_B, D_B)$ has $U_B = 0.6$ and $D_B = 4$
- Scheduling model is $M(\{T_1, T_2\}, R_B(0.6, 4), EDF)$.

Example

Two periodic tasks

- Two periodic tasks $T_1(7,3)$ and $T_2(21,1)$
- EDF scheduling algorithm
- Partitioned resource R is available 3 time units every 5 time units
- From Definitions 4 and 7 in [5], $R_B(U_B, D_B)$ has $U_B = 0.6$ and $D_B = 4$
- Scheduling model is $M(\{T_1, T_2\}, R_B(0.6, 4), EDF)$.

Schedulability of *M* according to [5]

Over the fractional resource $U_B = 0.6$, T_1 and T_2 finish their execution at least 2 time units earlier then their deadlines. According to Theorem 1 in [5] the schedulability of M is inconclusive, because $2 < 4 = D_B$.

• Exact schedulability analysis: necessary and sufficient way to determine whether or not $M(W, \Gamma, A)$ is schedulable.

- **1** Exact schedulability analysis: necessary and sufficient way to determine whether or not $M(W, \Gamma, A)$ is schedulable.
- Periodic capacity bound: given W, A, and Π , find the smallest possible periodic capacity bound (Θ^*/Π) such that $M(W, \Gamma(\Pi, \Theta), A)$ is schedulable if $\Theta \geq \Theta^*$.
- **3** Utilization bound: given Γ and A find the largest possible utilization bound UB such that $M(W, \Gamma, A)$ is schedulable if $\sum_{T_i \in W} \frac{e_i}{p_i} \leq UB$

- Exact schedulability analysis: necessary and sufficient way to determine whether or not $M(W, \Gamma, A)$ is schedulable.
- **2** Periodic capacity bound: given W, A, and Π , find the smallest possible periodic capacity bound (Θ^*/Π) such that $M(W,\Gamma(\Pi,\Theta),A)$ is schedulable if $\Theta \geq \Theta^*$.
- 3 Utilization bound: given Γ and A find the largest possible utilization bound *UB* such that $M(W, \Gamma, A)$ is schedulable if $\sum_{T_i \in W} \frac{e_i}{p_i} \leq UB$
- **4** Algorithm set: given W and Γ find a set of algorithms \mathcal{A} such that $M(W, \Gamma, A)$ is schedulable if $A \in \mathcal{A}$.

- Exact schedulability analysis: necessary and sufficient way to determine whether or not $M(W, \Gamma, A)$ is schedulable.
- ② Periodic capacity bound: given W, A, and Π , find the smallest possible periodic capacity bound (Θ^*/Π) such that $M(W,\Gamma(\Pi,\Theta),A)$ is schedulable if $\Theta \geq \Theta^*$.
- 3 Utilization bound: given Γ and A find the largest possible utilization bound *UB* such that $M(W, \Gamma, A)$ is schedulable if $\sum_{T_i \in W} \frac{e_i}{p_i} \leq UB$
- **4** Algorithm set: given W and Γ find a set of algorithms \mathcal{A} such that $M(W, \Gamma, A)$ is schedulable if $A \in \mathcal{A}$.
- Compositional guarantee: given n scheduling models, derive a new parent scheduling model from the n scheduling models such that the new scheduling model is schedulable if and only if, the n child models are schedulable.

Periodic Resource Model

- Periodic resource model $\Gamma(\Pi,\Theta)$ characterizes a partitioned resource that guarantees allocations of Θ time units every Π time units.
- In the previous example we had $\Gamma(5,3)$.

Definition

The *resource supply* of a resource is defined as the amount of resource allocation that the resource provides

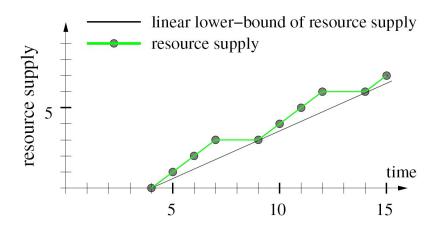
Resource supply bound

Definition

For a periodic resource $\Gamma(\Pi,\Theta)$ a resource supply bound function $sbf_{\Gamma}(t)$ of a time interval length t calculates the minimum resource supply of Γ during t times units. (exact math in the paper)

- sbf_Γ is a non-decreasing step function
- Introduce a linear lower bound function as $lsbf_{\Gamma}$ such that $lsbf_{\Gamma}(t) \leq sbf_{\Gamma}(t)$. (exact math in the paper)

Resource supply



Service time

Definition

The *service time* of a resource is defined as the duration that it takes for the resource to provide a resource supply.

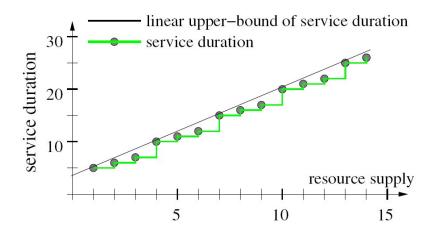
Service time

Definition

The *service time* of a resource is defined as the duration that it takes for the resource to provide a resource supply.

- For a periodic resource $\Gamma(\Pi, \Theta)$, the service time bound function $tbf_{\Gamma(t)}$ calculates the maximum service time of Γ for a t-time-unit resource supply.
- tbf_{Γ} is a non-decreasing step function
- $\mathit{ltbf}_{\Gamma}(t)$ is a linear service time bound function that upper-bounds $\mathit{tbf}_{\Gamma}(t)$

Service time



Resource Demand

Definition

The *resource demand* of a workload set is defined as the amount of resource allocation that the workload set requests.

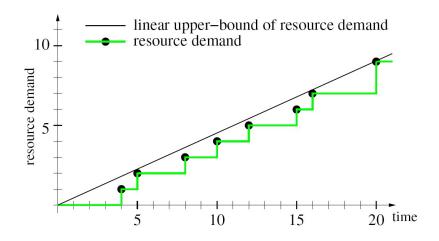
Resource Demand

Definition

The *resource demand* of a workload set is defined as the amount of resource allocation that the workload set requests.

- For a periodic workload set W the resource demand bound function $dbf_W(t)$ of a time interval length t calculates the maximum resource demand of W during t time units.
- $dbf_W(t)$ is a discrete step function.
- A linear demand bound function $ldbf_W(t)$ upper-bounds $dbf_W(t)$.

Resource Demand



EDF Schedulability Analysis

Theorem

For a given scheduling model $M(W, \Gamma, EDF)$, M is schedulable if and only if the resource demand of W during a time interval is no greater than the resource supply of Γ during the same time interval for all time intervals during a hyperperiod, i.e.,

$$\forall 0 < t \leq 2 \cdot LCM_W : dbf_W(t) \leq sbf_{\Gamma}(t)$$

EDF Schedulability Analysis

Theorem

For a given scheduling model $M(W, \Gamma, EDF)$, M is schedulable if and only if the resource demand of W during a time interval is no greater than the resource supply of Γ during the same time interval for all time intervals during a hyperperiod, i.e.,

$$\forall 0 < t \leq 2 \cdot LCM_W : dbf_W(t) \leq sbf_{\Gamma}(t)$$

Proof in the paper.

Example

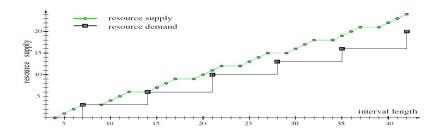
Example

- Scheduling model $M(W, \Gamma(5,3), EDF)$
- $W = \{T_1(7,3), T_2(21,1)\}$

Example

Example

- Scheduling model M(W, Γ(5, 3), EDF)
- $W = \{T_1(7,3), T_2(21,1)\}$



• M is schedulable, because $\textit{dbf}_{\textit{W}}(t) \leq \textit{sbf}_{\Gamma}(t)$, $0 < t \leq 42$

Schedulability Bounds

- Scheduling model $M(W, \Gamma, A)$ provides only two of its elements, but not the other element
- Find a bound for the missing element such that *M* is schedulable
 - Periodic capacity bound (PCB): $M(W, \Gamma, A)$ provides W and A, calculate a bound for Γ .
 - *Utilization bound* (UB): $M(W, \Gamma, A)$ provides Γ and A, calculate a bound for W.

Periodic Capacity Bounds

Definition

The *periodic capacity bound PCB_W*(Π) of a resource period Π is a number such that a scheduling model $M(W, \Gamma(\Pi, \Theta), A)$ is schedulable if

$$PCB_W(\Pi) \leq \frac{\Theta}{\Pi}$$

Periodic Capacity Bounds

Definition

The *periodic capacity bound PCB_W*(Π) of a resource period Π is a number such that a scheduling model $M(W, \Gamma(\Pi, \Theta), A)$ is schedulable if

$$\textit{PCB}_{\textit{W}}(\Pi) \leq \frac{\Theta}{\Pi}$$

- Resource capacity:
 - Capacity of a periodic resource $\Gamma(\Pi,\Theta)$ is $\frac{\Theta}{\Pi}$
- How to get the optimal PCB_W?
 - Assume period Π is given, and $PCB_W(\Pi, EDF) = \frac{\Theta}{\Pi}$.
 - Find the smallest possible Θ such that $\forall 0 < t \le 2 \cdot LCM_W : dbf_W(t) \le sbf_{\Gamma}(t)$.
- Use the $lsbf_{\Gamma}(t)$ function to find a PCB_W numerically. (formula in the paper)

Utilization Bound

Definition

The *utilization bound UB* $_{\Gamma}$ of a given resource Γ is a number such that a scheduling model $M(W, \Gamma, A)$ is schedulable if

$$\sum_{T_i \in W} \frac{e_i}{p_i} \le \mathit{UB}_\Gamma$$

Utilization Bound

Definition

The *utilization bound UB* $_{\Gamma}$ of a given resource Γ is a number such that a scheduling model $M(W, \Gamma, A)$ is schedulable if

$$\sum_{T_i \in W} \frac{e_i}{p_i} \le \mathit{UB}_\Gamma$$

- Used to perform admission tests of a periodic workload set W over a given periodic resource Γ.
- Details of the formula and the proof are in the paper

• Given multiple scheduling models M_1, \ldots, M_n derive a parent scheduling model $M_P(W_P, \Gamma_P, A_P)$ from M_1, \ldots, M_n as follows:

- Given multiple scheduling models M_1, \ldots, M_n derive a parent scheduling model $M_P(W_P, \Gamma_P, A_P)$ from M_1, \ldots, M_n as follows:
 - A_P and Π_P are given

- Given multiple scheduling models M_1, \ldots, M_n derive a parent scheduling model $M_P(W_P, \Gamma_P, A_P)$ from M_1, \ldots, M_n as follows:
 - A_P and Π_P are given
 - derive W_P from the child resource models $\Gamma_i(\Pi_i, \Theta_i)$ such that $W_P = \{T_1(\Pi_1, \Theta_1), \cdots, T_n(\Pi_n, \Theta_n)\}.$

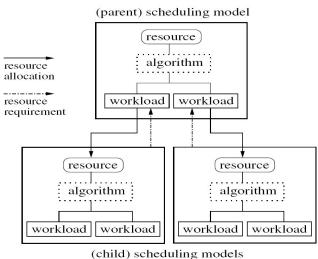
- Given multiple scheduling models M_1, \ldots, M_n derive a parent scheduling model $M_P(W_P, \Gamma_P, A_P)$ from M_1, \ldots, M_n as follows:
 - A_P and Π_P are given
 - derive W_P from the child resource models $\Gamma_i(\Pi_i, \Theta_i)$ such that $W_P = \{T_1(\Pi_1, \Theta_1), \cdots, T_n(\Pi_n, \Theta_n)\}.$
 - derive $PCB_{W_P}(\Pi_P, A_P)$

- Given multiple scheduling models M_1, \ldots, M_n derive a parent scheduling model $M_P(W_P, \Gamma_P, A_P)$ from M_1, \ldots, M_n as follows:
 - A_P and Π_P are given
 - derive W_P from the child resource models $\Gamma_i(\Pi_i, \Theta_i)$ such that $W_P = \{T_1(\Pi_1, \Theta_1), \cdots, T_n(\Pi_n, \Theta_n)\}.$
 - derive $PCB_{W_P}(\Pi_P, A_P)$
 - compute Θ_P such that $\Theta_P = \Pi_P \cdot PCB_{W_P}(\Pi_P, A_P)$.

Theorem

 M_P is schedulable if and only if M_1, \dots, M_n are schedulable.

Conclusion



(child) scheduling models