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Markov Reward Chains

I Among most important and wide-spread analytical
performance models

I Ever growing complexity of Markov reward chain systems

I Compositional generation: Composing a big system from
several small components

I State space explosion: Result size is product of sizes of
components

I Need aggregation methods...

I ...and they should be compositional

I We consider special models of Markov reward chains:
Discontinuous Markov reward chains and Markov reward
chains with fast transitions
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Recapitulation: Discrete time Markov chains
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Transition probability ma-
trix:

1 2 3

1 0.4 0.3 0.3
2 0.1 0.9 0
3 0.9 0.1 0

I Graphs with nodes
representing states

I Outgoing arrows
determine stochastic
behavior of each state

I Probabilities only
depend on current
state



Continuous time Markov chains
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I Generator matrix:

1 2 3

1 -3 1 2
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Continuous time Markov reward chains

ONMLHIJK1
0.8 r0

λ

��

τ

��
ONMLHIJK2

0.1 r1

µ
22ONMLHIJK3

0.1 r2ν
rr

I P = (σ,Q, ρ)

I σ is a stochastic row initial probability vector (0.8, 0.1, 0.1)

I ρ is a state reward vector (r0, r1, r2)

I Transition probability matrix

P(t) =
∞∑

n=0

Qntn

n!
= eQt

I Rewards are used to measure performance (application
dependent).



Discontinuous Markov reward chains

I Markov chains with instantaneous transitions → discontinuous
Markov chains

I Discontinuous Markov reward chain: P = (σ,Π,Q, ρ)

I Intuition: Π[i , j ] denotes probability that a process occupies
two states via an instantaneous transition.

I Π = I leads to a standard Markov chain → generalization
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Discontinuous Markov reward chains

Aggregation for discontinuous Markov reward chains

I Ordinary lumping

I Reduction



Ordinary lumping

I We lump P = (σ,Π,Q, ρ) to P = (σ,Π,Q, ρ)

I Partition L is an ordinary lumping

I P
L→ P



Ordinary lumping

I P
L→ P

I Partition of the state space into classes

I States lumped together form a class

I Equivalent transition behavior to other classes (intuitively:
probability of class is sum of probabilities of states)

I All states in a class have the same reward, total reward is
preserved



Example

I P
L→ P
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Reduction

I We reduce P = (σ,Π,Q, ρ) to P = (σ, I ,Q, ρ)

I P →r P

I Result is unique up to state permutation.

I Canonical product decomposition of Π

I Reduced states are given by ergodic classes of the original
process (ergodic = each state can be reached from each other
state in finite time)

I Total reward is preserved



Markov reward chains with fast transitions

Markov reward chains with fast transitions

I Definition

I Aggregation



Markov reward chains with fast transitions

I Adds parameterized (“fast”) transitions to a standard Markov
reward chain.

I Uses two generator matrixes Qs and Qf , for slow and fast
transitions.

I P = (σ,Qs ,Qf , ρ) is a function...

I ...where to each τ > 0 a Markov reward chain
Pτ = (σ, I ,Qs + τQf , ρ) is assigned

I The limit τ →∞ makes fast transitions instantaneous, and
we end up with a discontinuous Markov reward chain.



Markov reward chains with fast transitions

Aggregation for Markov reward chains with fast transitions

I τ -lumping

I τ -reduction



τ -lumping

I We τ -lump P = (σ,Qs ,Qf , ρ) to P = (σ,Qs ,Q f , ρ)

I Can define it using the limiting discontinuous Markov reward
chain.

I P
L
 P

I Not unique



τ -lumping

P
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τ -reduction

I We τ -reduce P = (σ,Qs ,Qf , ρ) to R = (σ, I ,Q, ρ)

I P  r R



Example

I P  r R
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τ -reduction

P
(fast transitions)

∞
�� r ***j*j

*j*j
*j*j

*j*j
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Q
(discontinuous) r

// R = R ′

(continuous)

I if P  r R

I and P →∞ Q →r R ′

I then R = R ′



Relational properties of ordinary lumping and τ -lumping

I Reduction works in one step, so no need to look at details of
its relational properties.

Lumping:

I Need transitivity and strong confluence...

I ...to ensure that iterative application yields a uniquely
determined process.

I Repeated application of ordinary lumping...

I ...can be replaced by single application of composition of
individual lumpings.

I For τ -lumping, only the limit is uniquely determined.



Relational properties of ordinary lumping and τ -lumping

I Reduction works in one step, so no need to look at details of
its relational properties.

Lumping:

I Need transitivity and strong confluence...

I ...to ensure that iterative application yields a uniquely
determined process.

I Repeated application of ordinary lumping...

I ...can be replaced by single application of composition of
individual lumpings.

I For τ -lumping, only the limit is uniquely determined.



Example
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Parallel composition

I P1 ≥ P1,P2 ≥ P2 =⇒ P1 ‖ P2 ≥ P1 ‖ P2

I Aggregate smaller components first...

I ...then combine them into the aggregated complete system.

I ≥ is semantic preorder.

I P ≥ P means P is an aggregated version of P.

I ‖ is a parallel composition.



Composing discontinuous Markov reward chains

I Kronecker sum ⊕ and Kronecker product ⊗
I Parallel composition P1 ‖ P2 =

(σ1 ⊗ σ2,Π1 ⊗Π2,Q1 ⊗Π2 + Π1 ⊗Q2, ρ1 ⊗ 1|ρ2| + 1|ρ1| ⊗ ρ2)

I If P1 and P2 are discontinuous Markov reward chains, then so
is P1 ‖ P2



Composing discontinuous Markov reward chains

I Both lumping and reduction are compositional with respect to
the parallel composition of discontinuous Markov reward
chains

I If P1
L1→ P1 and P2

L2→ P2, then P1 ‖ P2
L1⊗L2→ P1 ‖ P2.

I If P1 →r P1 and P2 →r P2, then P1 ‖ P2 →r P1 ‖ P2



Composing Markov reward chains with fast transitions

I Parallel composition
P1 ‖ P2 = (σ1⊗σ2,Qs,1⊕Qs,2,Qf ,1⊕Qf ,2, ρ1⊗1|ρ2|+1|ρ1|⊗ρ2)

I If P1
L1 P1 and P2

L2 P2, then P1 ‖ P2
L1⊗L2 P1 ‖ P2.

I If P1  r P1 and P2  r P2, then P1 ‖ P2  r P1 ‖ P2



Example of parallel composition
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Aggregated version of composition
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Summary
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End

I Questions?
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