Compositionality for Markov Reward Chains with Fast Transitions J. Markovski, A. Sokolova, N. Trčka, E. P. de Vink

presented by Elias Pschernig

January 24, 2008

Outline

Introduction

Motivation Recapitulation: Markov Chains

Aggregation methods

Discontinuous Markov reward chains Ordinary lumping Reduction Markov reward chains with fast transitions au-lumping au-reduction Relational properties

Parallel composition

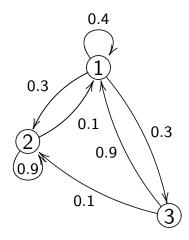
Markov Reward Chains

- Among most important and wide-spread analytical performance models
- Ever growing complexity of Markov reward chain systems
- Compositional generation: Composing a big system from several small components
- State space explosion: Result size is product of sizes of components
- Need aggregation methods...
- …and they should be compositional
- We consider special models of Markov reward chains: Discontinuous Markov reward chains and Markov reward chains with fast transitions

Markov Reward Chains

- Among most important and wide-spread analytical performance models
- Ever growing complexity of Markov reward chain systems
- Compositional generation: Composing a big system from several small components
- State space explosion: Result size is product of sizes of components
- Need aggregation methods...
- …and they should be compositional
- We consider special models of Markov reward chains: Discontinuous Markov reward chains and Markov reward chains with fast transitions

Recapitulation: Discrete time Markov chains



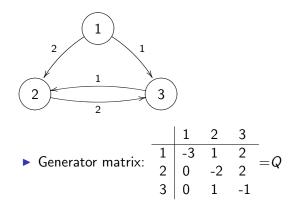
Transition probability matrix;

	1	2	3
1	0.4	0.3	0.3
2	0.1	0.9	0

3 0.9 0.1 0

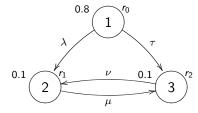
- Graphs with nodes representing states
- Outgoing arrows determine stochastic behavior of each state
- Probabilities only depend on current state

Continuous time Markov chains



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Continuous time Markov reward chains



$$\blacktriangleright P = (\sigma, Q, \rho)$$

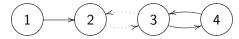
- σ is a stochastic row initial probability vector (0.8, 0.1, 0.1)
- ρ is a state reward vector (r_0, r_1, r_2)
- Transition probability matrix

$$P(t) = \sum_{n=0}^{\infty} \frac{Q^n t^n}{n!} = e^{Qt}$$

Rewards are used to measure performance (application dependent).

Discontinuous Markov reward chains

- ► Markov chains with instantaneous transitions → discontinuous Markov chains
- Discontinuous Markov reward chain: $P = (\sigma, \Pi, Q, \rho)$
- Intuition: Π[i, j] denotes probability that a process occupies two states via an instantaneous transition.
- $\Pi = I$ leads to a standard Markov chain \rightarrow generalization



Discontinuous Markov reward chains

Aggregation for discontinuous Markov reward chains

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Ordinary lumping
- Reduction

Ordinary lumping

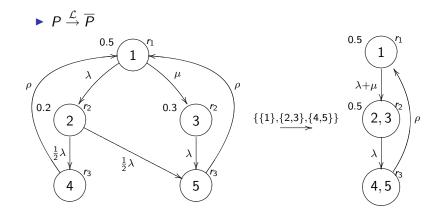
• We lump $P = (\sigma, \Pi, Q, \rho)$ to $\overline{P} = (\overline{\sigma}, \overline{\Pi}, \overline{Q}, \overline{\rho})$

- Partition *L* is an ordinary lumping
- $\blacktriangleright P \xrightarrow{\mathcal{L}} \overline{P}$

Ordinary lumping

- $\blacktriangleright P \xrightarrow{\mathcal{L}} \overline{P}$
- Partition of the state space into classes
- States lumped together form a class
- Equivalent transition behavior to other classes (intuitively: probability of class is sum of probabilities of states)
- All states in a class have the same reward, total reward is preserved

Example



▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

Reduction

- We reduce $P = (\sigma, \Pi, Q, \rho)$ to $\overline{P} = (\overline{\sigma}, I, \overline{Q}, \overline{\rho})$
- $\blacktriangleright P \to_r \overline{P}$
- Result is unique up to state permutation.
- Canonical product decomposition of Π
- Reduced states are given by ergodic classes of the original process (ergodic = each state can be reached from each other state in finite time)

Total reward is preserved

Markov reward chains with fast transitions

Markov reward chains with fast transitions

(ロ)、(型)、(E)、(E)、 E) の(の)

- Definition
- Aggregation

Markov reward chains with fast transitions

- Adds parameterized ("fast") transitions to a standard Markov reward chain.
- ► Uses two generator matrixes Q_s and Q_f, for slow and fast transitions.
- $P = (\sigma, Q_s, Q_f, \rho)$ is a function...
- ...where to each $\tau > 0$ a Markov reward chain $P_{\tau} = (\sigma, I, Q_s + \tau Q_f, \rho)$ is assigned
- The limit $\tau \to \infty$ makes fast transitions instantaneous, and we end up with a discontinuous Markov reward chain.

Markov reward chains with fast transitions

Aggregation for Markov reward chains with fast transitions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

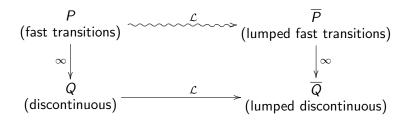
- ▶ τ -lumping
- τ -reduction

au-lumping

- We τ -lump $P = (\sigma, Q_s, Q_f, \rho)$ to $\overline{P} = (\overline{\sigma}, \overline{Q}_s, \overline{Q}_f, \overline{\rho})$
- Can define it using the limiting discontinuous Markov reward chain.

- $\blacktriangleright P \stackrel{\mathcal{L}}{\leadsto} \overline{P}$
- Not unique

au-lumping



イロト 不得 トイヨト イヨト

э

τ -reduction

▶ We τ -reduce $P = (\sigma, Q_s, Q_f, \rho)$ to $R = (\overline{\sigma}, I, \overline{Q}, \overline{\rho})$ ▶ $P \rightsquigarrow_r R$

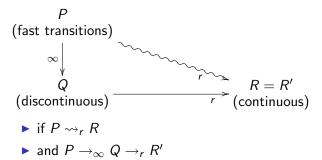
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

 $\triangleright P \rightsquigarrow_r R$ 1 λ $rac{b}{a+b}\lambda$ $\tfrac{\mathsf{a}}{\mathsf{a}+\mathsf{b}}\lambda$ 2 τ -reduction bτ $a\tau$ 2,3 2,4 3 4 μ ρ 5 μ 5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

τ -reduction



• then R = R'

Relational properties of ordinary lumping and $\tau\text{-lumping}$

 Reduction works in one step, so no need to look at details of its relational properties.

Lumping:

- Need transitivity and strong confluence...
- ...to ensure that iterative application yields a uniquely determined process.
- Repeated application of ordinary lumping...
- ...can be replaced by single application of composition of individual lumpings.

For τ -lumping, only the limit is uniquely determined.

Relational properties of ordinary lumping and $\tau\text{-lumping}$

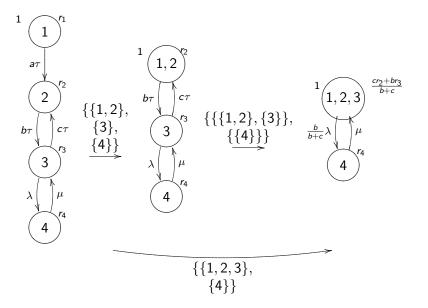
Reduction works in one step, so no need to look at details of its relational properties.

Lumping:

- Need transitivity and strong confluence...
- ...to ensure that iterative application yields a uniquely determined process.
- Repeated application of ordinary lumping...
- ...can be replaced by single application of composition of individual lumpings.

For τ -lumping, only the limit is uniquely determined.

Example



Parallel composition

- $\blacktriangleright P_1 \ge \overline{P}_1, P_2 \ge \overline{P}_2 \Longrightarrow P_1 \parallel P_2 \ge \overline{P}_1 \parallel \overline{P}_2$
- Aggregate smaller components first...
- …then combine them into the aggregated complete system.

- $\blacktriangleright \geq$ is semantic preorder.
- $P \ge \overline{P}$ means \overline{P} is an aggregated version of P.
- ▶ || is a parallel composition.

Composing discontinuous Markov reward chains

- \blacktriangleright Kronecker sum \oplus and Kronecker product \otimes
- ► Parallel composition $P_1 \parallel P_2 = (\sigma_1 \otimes \sigma_2, \Pi_1 \otimes \Pi_2, Q_1 \otimes \Pi_2 + \Pi_1 \otimes Q_2, \rho_1 \otimes \mathbf{1}^{|\rho_2|} + \mathbf{1}^{|\rho_1|} \otimes \rho_2)$
- If P₁ and P₂ are discontinuous Markov reward chains, then so is P₁ || P₂

Composing discontinuous Markov reward chains

 Both lumping and reduction are compositional with respect to the parallel composition of discontinuous Markov reward chains

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• If
$$P_1 \xrightarrow{\mathcal{L}_1} \overline{P}_1$$
 and $P_2 \xrightarrow{\mathcal{L}_2} \overline{P}_2$, then $P_1 \parallel P_2 \xrightarrow{\mathcal{L}_1 \otimes \mathcal{L}_2} \overline{P}_1 \parallel \overline{P}_2$

▶ If
$$P_1 \rightarrow_r \overline{P}_1$$
 and $P_2 \rightarrow_r \overline{P}_2$, then $P_1 \parallel P_2 \rightarrow_r \overline{P}_1 \parallel \overline{P}_2$

Composing Markov reward chains with fast transitions

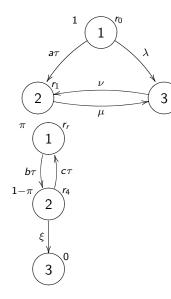
Parallel composition
P1 || P2 = (\sigma_1 \otimes \sigma_2, Q_{s,1} \oplus Q_{s,2}, Q_{f,1} \oplus Q_{f,2}, \rho_1 \otimes \mathbf{1}^{|\rho_2|} + \mathbf{1}^{|\rho_1|} \otimes \rho_2)

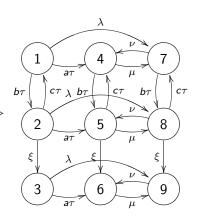
If P1 \$\limstyset \mathbf{1}_1\$ and P2 \$\limstyset \overline \overline \P2\$, then P1 \$|| P2 \$\limstyset \overline \Overline \P1\$ \$|| \$\overline \P2\$.

If P1 \$\limstyset \overline \P1\$ and \$P2 \$\limstyset \overline \P2\$, then \$P1\$ \$|| \$P2 \$\limstyset \overline \P2\$.
If \$P1 \$\limstyset \overline \P1\$ and \$P2 \$\limstyset \overline \P2\$, then \$P1\$ \$|| \$P2 \$\limstyset \overline \P2\$.

Example of parallel composition

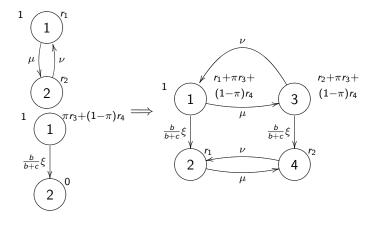
 r_2





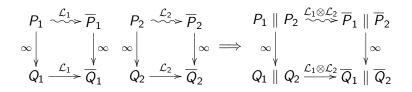
▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Aggregated version of composition



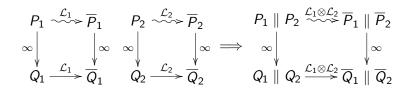
▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

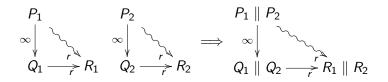
Summary



イロト 不得 とくほ とくほ とうほう

Summary





イロト イポト イヨト イヨト

э

► Questions?

<□> <@> < E> < E> E のQで