
Outline Introduction HTL Steer-By-Wire Implementation Conclusion

A Hierarchical Coordination Language for
Interacting Real-Time Tasks

Arkadeb Ghosal, Thomas A. Henzinger, Daniel Iercan,
Christoph M. Kirsch, Alberto Sangiovanni-Vincentelli

presented by: Hannes Payer

University of Salzburg
Compositionality Seminar WS 07/08

December 6, 2007



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Introduction
Motivation

HTL
Introduction
Language Overview

Steer-By-Wire
Example

Implementation
Compiler

Conclusion



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Real-Time Programming Difficulties

• trial and error - if during a program test some task misses its
deadline ⇒ reassigning of task priorities

• prove timing of a program using scheduling theory and/or
formal verification

• scheduling analysis becomes difficult when the program
structure is irregular

• formal techniques are difficult due to state space explosion

• part of the problem: timing is often defined in an indirect way,
through low-level constructs (priorities)



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

HTL

• HTL . . . Hierarchical Timing Language

• HTL is a programming language for hard real-time systems

• critical timing constraints are specified within the language,
and ensured by the compiler

• high-level coordination language for interacting hard real-time
tasks



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

HTL

• HTL programs determine portable and predictable real-time
behavior of periodic software tasks running on a possibly
distributed system of host computers

• individual tasks can be implemented in “foreign” languages

• more general than Giotto because it offers hierarchical layers
of abstraction



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Tasks

• the computational unit of HTL are LET tasks

• LET model decouples the times when the task reads input and
writes output from the time when the task executes

• release and termination events, which are triggered by clock
ticks or sensor interrupts, determine the LET of the task

• a LET task is time-safe if it completes execution before the
termination event occurs (on some given hardware)

• time-safe LET tasks are time and value deterministic, portable
and composable



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

LET



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Communicators

• the communication model for HTL is centered around
communicators

• a communicator is a typed variable that can be accessed only
at specific time instances

• time instances are periodic and specified through a
communicator period

• sensors and actuators are communicators, but communicators
can also be used to exchange data between tasks

• the latest read instance determines the release time

• the earliest write instance determines the termination time



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Communicators



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Ports

• direct communication between tasks is allowed for tasks with
identical frequencies

• tasks with different frequencies can only communicate via
communicators

• direct communication ensures zero latency

• a port is a variable with fixed data type but not bound to time
instances



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Modes

• HTL generalizes the LET model from tasks to task groups

• a set of interacting tasks with the same frequency form a
mode with a specified mode period

• tasks within a mode may interact through ports

• tasks in different modes can only communicate through
communicators



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Modes



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Modules

• a mode switch can occur at the end of a mode period, which
are triggered by conditions on communicator and port values

• a network of modes and mode switches is called a module

• an HTL program is a set of modules and a set of
communicators

• modes within a module are composed sequentially

• modes from different modules are composed in parallel and
may interact through communicators

• one mode in each module is specified as the start mode



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Modules & Modes



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Refinement I

• an abstract task is a temporally conservative placeholder for a
concrete task with an implementation

• an abstract task has a frequency, specific I/O times,
dependencies, and WCET, but no implementation

• refinement is useful for compact representation and
simplifying program analysis

• an HTL program is schedulable if the top-level program
(without considering any refinement) is schedulable ⇒ avoids
a combinatorial explosion

• an HTL program with multiple levels of refinement can be
translated into an equivalent flat program without refinement



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Refinement II

• 3 constraints ensure that if the task in the top-level (abstract)
program can be scheduled, also its refinement (concrete) task
can be scheduled:

• the latest communicator read must be equal to or earlier then
that of the top-level task

• every task that precedes the refined task must refine a task
that precedes the abstract task

• the WCET of the refined task must be less than or equal to
the WCET of the abstract task



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Refinement III

• refinement can represent both choice and change of behavior
• choice: is expressed when an abstract task t in a mode m is

the parent of different tasks in several modes of a program
that refines m

• change: is expressed by having a task that refines t reading
from and writing to different communicators than t does



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Modules & Modes



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Distribution

• different modules can run on different hosts

• several hosts interact with each other through communication
channels

• distribution is specified through a mapping of top-level
modules to hosts

• code generation and schedulability analysis must take the
distribution into account

• the LET model is extended to include both WCETs as well as
worst-case output transmission times WCTTs



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Extensibility/Compositionality

• parallel modules can be appended to the implementation
without changing the timing behavior of the implementation
(horizontally)

• the refinement concept can be used to provide temporal space
for future extensions (vertically)



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Steer-By-Wire



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Steer-By-Wire



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Implementation

The compiler . . .

• checks well-formedness, well-timedness, and schedulability of a
given HTL program

• flattens the program into a semantically equivalent HTL
program with only top-level modules

• generates E code for the flattened program targeting the
E machine



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Well-Formedness, Well-Timedness, Schedulability

The compiler . . .

• verifies that any concrete task refines its parent task

• performs an EDF-scheduling test on the abstract, top-level
portion of the input program

• adds the WCTT for broadcasting the output port values of
each task to the WCET of the task (distributed HTL
programs)



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Flattening

• flattening works by essentially computing the product of all
modes in the refinement of each top-level module of the
original program

• mode switches in more abstract modules need to be checked
before mode switches in more concrete modules

• flattening an HTL program may in theory result in generated
code that is exponentially larger than the size of the input
program

• APGES 2007: Separate Compilation of Hierarchical Real-Time
Programs into Linear-Bounded Embedded Machine Code



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Schedulability

• the schedulability problem is solved only for the top-level

• scheduling task execution during time slots in which the
parent task is executed

• HTL guarantees that top-level schedulability is a sufficient
condition for schedulability

• EDF scheduling algorithm is used for top-level schedulability
on a single host



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Implementation



Outline Introduction HTL Steer-By-Wire Implementation Conclusion

Conclusion

• HTL allows parallel composition of modules and horizontal
refinement of tasks without modifying the timing behavior

• the hierarchical layers of abstraction allows efficient and
concise specification without overloading program analysis

• lower levels are schedulable if higher levels of abstraction are
schedulable

• in general, checking refinement in HTL is exponentially faster
then checking time-safety (schedulability)

• abstract HTL programs are temporally conservative
approximations of concrete HTL programs


	Outline
	Introduction
	Motivation

	HTL
	Introduction
	Language Overview
	

	Steer-By-Wire
	Example

	Implementation
	Compiler

	Conclusion

