Outline Introduction HTL Steer-By-Wire Implementation

[e] (e]e] (e]e] 00000
000000000
000000

A Hierarchical Coordination Language for
Interacting Real-Time Tasks

Arkadeb Ghosal, Thomas A. Henzinger, Daniel lercan,
Christoph M. Kirsch, Alberto Sangiovanni-Vincentelli
presented by: Hannes Payer

University of Salzburg
Compositionality Seminar WS 07/08

December 6, 2007

Conclusion

Outline Introduction HTL Steer-By-Wire Implementation Conclusion

[e] (e]e] (e]e] 00000
000000000
000000

Introduction
Motivation

HTL
Introduction
Language Overview

Steer-By-Wire
Example

Implementation
Compiler

Conclusion

Qutline Introduction HTL Steer-By-Wire Implementation Conclusion
° 00 00000

Real-Time Programming Difficulties

e trial and error - if during a program test some task misses its
deadline = reassigning of task priorities

e prove timing of a program using scheduling theory and/or
formal verification

e scheduling analysis becomes difficult when the program
structure is irregular

e formal techniques are difficult due to state space explosion

e part of the problem: timing is often defined in an indirect way,
through low-level constructs (priorities)

HTL
[1o}

HTL

HTL ... Hierarchical Timing Language
HTL is a programming language for hard real-time systems

critical timing constraints are specified within the language,
and ensured by the compiler

high-level coordination language for interacting hard real-time
tasks

HTL
oe

HTL

e HTL programs determine portable and predictable real-time
behavior of periodic software tasks running on a possibly
distributed system of host computers

¢ individual tasks can be implemented in “foreign” languages

e more general than Giotto because it offers hierarchical layers
of abstraction

HTL

®00000000

Tasks

the computational unit of HTL are LET tasks

LET model decouples the times when the task reads input and
writes output from the time when the task executes

release and termination events, which are triggered by clock
ticks or sensor interrupts, determine the LET of the task

a LET task is time-safe if it completes execution before the
termination event occurs (on some given hardware)

time-safe LET tasks are time and value deterministic, portable
and composable

HTL

000000000
comple‘rkion event
release event Logical Execution Time (LET) termination event
Logical { Ehe
. running running
Physical 1 r 1r I

release start preemption resume

completion termination

Qutline Introduction HTL Steer-By-Wire Implementation Conclusion

00000

Communicators

e the communication model for HTL is centered around
communicators

e a communicator is a typed variable that can be accessed only
at specific time instances

e time instances are periodic and specified through a
communicator period

e sensors and actuators are communicators, but communicators
can also be used to exchange data between tasks

e the latest read instance determines the release time

e the earliest write instance determines the termination time

Outline

Introduction Steer-By-Wire Implementation Conclusion
Communicators
12 reads 2~ 2 updates 6 2 updates 5%
\nstar\ke of 3 instance of c1 instance of c2
LET for task t2 ‘
" v
1 reads 2 1 reads 2n¢ 1 updates 4"
instance of ¢1 instance of c4 instance of ¢2
LET for task t1
v
c4 c4 c4 c4 c4 c4
c3 c3 c3 c3 c3
c2 c2 c2 c2 c2 c2
cl cl cl ct cl cl cl cl cl
| ! ! ! I ! ! ! ! ! ! ! ! I ! ! !
f T T T T T T T T T T T T T T T T
0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17

HTL

0O000@0000

Ports

direct communication between tasks is allowed for tasks with
identical frequencies

tasks with different frequencies can only communicate via
communicators

direct communication ensures zero latency

a port is a variable with fixed data type but not bound to time
instances

HTL

000008000

Modes

HTL generalizes the LET model from tasks to task groups

a set of interacting tasks with the same frequency form a
mode with a specified mode period

tasks within a mode may interact through ports

tasks in different modes can only communicate through
communicators

Outline Introduction HTL Steer-By-Wire Implementation Conclusion

[e] (e]e} (e]e] 00000
0O00000e00
000000

Modes

t9 mode m2
)))

O / N Ny O
I E e E e EEEmm [T 1
t t1 t3 i \,: t1 t3
1 [} 1
; t2 mode m1 t2 mode m1i

Qutline Introduction HTL Steer-By-Wire Implementation Conclusion

ofelel lo}

Modules

e a mode switch can occur at the end of a mode period, which
are triggered by conditions on communicator and port values

e a network of modes and mode switches is called a module

e an HTL program is a set of modules and a set of
communicators

e modes within a module are composed sequentially

e modes from different modules are composed in parallel and
may interact through communicators

e one mode in each module is specified as the start mode

HTL

O0000000e

Modules & Modes

G

()

% module M1 module M2

module M3

program P

HTL

®00000

Refinement |

an abstract task is a temporally conservative placeholder for a
concrete task with an implementation

an abstract task has a frequency, specific 1/0 times,
dependencies, and WCET, but no implementation
refinement is useful for compact representation and
simplifying program analysis

an HTL program is schedulable if the top-level program

(without considering any refinement) is schedulable = avoids
a combinatorial explosion

an HTL program with multiple levels of refinement can be
translated into an equivalent flat program without refinement

HTL

0O®0000

Refinement |l

e 3 constraints ensure that if the task in the top-level (abstract)
program can be scheduled, also its refinement (concrete) task
can be scheduled:

o the latest communicator read must be equal to or earlier then
that of the top-level task

e every task that precedes the refined task must refine a task
that precedes the abstract task

e the WCET of the refined task must be less than or equal to
the WCET of the abstract task

Qutline Introduction HTL Steer-By-Wire Implementation Conclusion

000000

Refinement Il1

e refinement can represent both choice and change of behavior

e choice: is expressed when an abstract task t in a mode m is
the parent of different tasks in several modes of a program
that refines m

e change: is expressed by having a task that refines t reading
from and writing to different communicators than t does

Outline Introduction HTL Steer-By-Wire

Implementation Conclusion
o] [e]e] [e]e) 00000
000000000
000000

Modules & Modes

\
= - - - ~
~
- \, ‘< v Y SS
ac 4 27 < ¥ »
< jﬁ gts ‘ ‘(:jé Q -
z) ’ <<
-7 \ R4 Sea
- \ S~
Jd] X -

HTL

O000e0

Distribution

different modules can run on different hosts

several hosts interact with each other through communication
channels

distribution is specified through a mapping of top-level
modules to hosts

code generation and schedulability analysis must take the
distribution into account

the LET model is extended to include both WCETs as well as
worst-case output transmission times WCTTs

Outline Introduction HTL Steer-By-Wire Implementation Conclusion
o] [e]e] [e]e) 00000
000000000
00000e

Extensibility /Compositionality

e parallel modules can be appended to the implementation
without changing the timing behavior of the implementation
(horizontally)

e the refinement concept can be used to provide temporal space
for future extensions (vertically)

Outline Introduction HTL Steer-By-Wire Implementation Conclusion
o] [e]e] [o) 00000
000000000
000000

Steer-By-Wire

Steering Feedback

SENSORS FUNCTIONALITIES ACT! RS
Power Coordinator Unit Vehicle Actuation

Desired steer
Wheel Motor

Desired Torque
Motor Actuator Controller Actuation
Vehicle Interface|
Steer Feedback

Wheel Angle
Motor Current
Motor Torque Supervisory Control Driver Feedback
Speed
Rolling Friction Steer Feedback
Sensors: steer angle/ torque, Power H Warning
wheel angle, motor torque/ Actuators: rack Pitch/ Yaw/ Roll Fault Handling

O current, friction, power, pitch, electric motors
yaw, roll

Outline Introduction HTL Steer-By-Wire

Implementation Conclusion
o] [e]e] oce 00000
000000000
000000

Steer-By-Wire

modules

sensor_rl actuator_rl control steer ower fault
[sensorrt] - [actustor.rt | toscback | |_P T

’
1

modes
ew e @0 e ew B @B
sensor actuator / \ steer ',' fault’ supervisq’r
[rr, i, fl, fr] [rr, i, fl, fr] '/¢°”"°' ' feedback p°we‘| diagnosis 1,23/
7’ ’ 1
/ ". refinement "‘ !
v v

4

e~ _

[(e (e

’
’
’
7

7

over under
steering eering

Outline Introduction HTL Steer-By-Wire Implementation Conclusion

[e] (e]e] (e]e] @0000
000000000
000000

Implementation

The compiler . ..

o checks well-formedness, well-timedness, and schedulability of a
given HTL program

e flattens the program into a semantically equivalent HTL
program with only top-level modules

e generates E code for the flattened program targeting the
E machine

Outline Introduction HTL Steer-By-Wire Implementation Conclusion

[e] (e]e] (e]e] O@000
000000000
000000

Well-Formedness, Well-Timedness, Schedulability

The compiler . ..
o verifies that any concrete task refines its parent task

e performs an EDF-scheduling test on the abstract, top-level
portion of the input program

e adds the WCTT for broadcasting the output port values of
each task to the WCET of the task (distributed HTL
programs)

Implementation
00e00

Flattening

flattening works by essentially computing the product of all
modes in the refinement of each top-level module of the
original program

mode switches in more abstract modules need to be checked
before mode switches in more concrete modules

flattening an HTL program may in theory result in generated
code that is exponentially larger than the size of the input
program

APGES 2007: Separate Compilation of Hierarchical Real-Time
Programs into Linear-Bounded Embedded Machine Code

Implementation
[e]ele] o]

Schedulability

the schedulability problem is solved only for the top-level

scheduling task execution during time slots in which the
parent task is executed

HTL guarantees that top-level schedulability is a sufficient
condition for schedulability

EDF scheduling algorithm is used for top-level schedulability
on a single host

Outline Introduction HTL Steer-By-Wire Implementation Conclusion

[e]e]ee] }
Implementation
HTL COMPILER
: | ‘ WCET
HTL Well- Well- +
Program formed? timed? SeheERE 7 WCTT
l Estimator
Schedule
| E-code Generator ‘ Generator
DTimi_ngt;_ ‘ E code ‘ | E code ‘ ‘ E code ‘
eseripion Functionality
Implementation
l l (C code)

|E machine| ‘ E machine ‘ | = machine‘
‘ Host 1 ‘ ‘ Host 2 ‘ ‘ Host 3 ‘

CONTROLLER

Functionality

Inter-host communication o
Description

QI/M_SI/M@I/M

PLANT

Outline Introduction Steer-By-Wire Conclusion

Conclusion

e HTL allows parallel composition of modules and horizontal
refinement of tasks without modifying the timing behavior

e the hierarchical layers of abstraction allows efficient and
concise specification without overloading program analysis

o lower levels are schedulable if higher levels of abstraction are
schedulable

e in general, checking refinement in HTL is exponentially faster
then checking time-safety (schedulability)

e abstract HTL programs are temporally conservative
approximations of concrete HTL programs

	Outline
	Introduction
	Motivation

	HTL
	Introduction
	Language Overview
	

	Steer-By-Wire
	Example

	Implementation
	Compiler

	Conclusion

