
Environment Intro to GC Immix

Immix: A Mark-Region Garbage Collector with
Space Efficiency, Fast Collection, and Mutator

Performance

Stephen M. Blackburn Kathryn S. McKinley

PLDI ’08 Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation

presented by

Michael Lippautz
Concurrency and Memory Management Seminar
WS 2010
University of Salzburg



Environment Intro to GC Immix

Why do we need GC? Where are we?

2008

• Programmers are more and more choosing managed languages
for modern applications (safety)

• Lots of short/medium lived objects

Problem

• ⇒ GC has a direct impact on program performance

• Tradeoff between time and space

Goal
Improve existing collection strategies



Environment Intro to GC Immix

Immix
(let’s figure out what this is about)

How does this work?

Mark-Region Garbage Collector

Which strategies, how, why?

• Space efficiency - space

• Fast collection - time

• Mutator performance - latency

⇒ 3 dimensions;
design space



Environment Intro to GC Immix

Immix
(let’s figure out what this is about)

How does this work?

Mark-Region Garbage Collector

Which strategies, how, why?

• Space efficiency - space

• Fast collection - time

• Mutator performance - latency

⇒ 3 dimensions;
design space



Environment Intro to GC Immix

Contents

Environment

A very brief introduction to GC
General
Näıve Mark-Sweep
Näıve Mark-Region

Immix
Algorithm
Details and policies
Defragmentation



Environment Intro to GC Immix

Environment - the bigger picture

• Java

• Jikes RVM

• GC on object level (not chunks of memory)
• Object model

Jikes Object

Object Header(s)

Type Information Block

Instance Fields

TIB

[]Fields

Field description

(RVMField)

GC flags

...

...

...



Environment Intro to GC Immix

A very brief overview

Only tracing GCs are discussed, but there do exist others, such as:

• Reference counting GCs

• Mixtures

Memory management utilizing a tracing GC

Basic approach

Determine which objects are reachable, discard the other ones



Environment Intro to GC Immix

A very brief overview (cont)

Terms

• Allocation of new objects

• Identification of live objects (reachability analysis)

• Reclamation of free memory

Types

• Moving vs non-moving

• Stop-the-world vs incremental

• Precise vs conservative (pointers)



Environment Intro to GC Immix

Reclamation strategies

Sweep-to-free-list

1. Allocate from a free list

2. Mark live objects

3. Sweep-to-free-list

Good: Time/space efficient
Bad: Locality
Examples: Mark-sweep (Näıve, tri-color)



Environment Intro to GC Immix

Reclamation strategies (cont)

Evacuate

1. Move live objects to new space

2. Reclaim old space

Good: Locality, contiguous allocation
Bad: 2x space, slow (copy)
Example: Semi-space

Compact

1. Move live objects to one end of the same space

Good: Locality, contiguous allocation
Bad: Multiple passes over heap, slow (copy)
Example: Mark-compact



Environment Intro to GC Immix

Näıve Mark-Sweep

• Mark phase
• Sweep phase



Environment Intro to GC Immix

Näıve Mark-Sweep

• Mark phase
• Sweep phase



Environment Intro to GC Immix

Näıve Mark-Sweep

• Mark phase
• Sweep phase



Environment Intro to GC Immix

Näıve Mark-Sweep

• Mark phase
• Sweep phase



Environment Intro to GC Immix

Näıve Mark-Region
• Memory is split into regions
• States:

• Free
• Unavailable

• Bump allocator in region
• Collector marks regions with at least one live objects as

unavailable



Environment Intro to GC Immix

Näıve Mark-Region(cont)

Questions

• How big can/should regions be?

• How does defragmentation work?

Immix

Sneak preview:

• Operates on a block (coarse grained) and line (fine grained)
level

• Recycling of partially used blocks



Environment Intro to GC Immix

Immix algorithm

Initial allocation

• Initially, all blocks are empty

• Thread-local allocator obtains a block from a global pool

• A full block triggers another request

• A full heap triggers a collection



Environment Intro to GC Immix

Immix algorithm

Initial allocation

• Initially, all blocks are empty

• Thread-local allocator obtains a block from a global pool

• A full block triggers another request

• A full heap triggers a collection



Environment Intro to GC Immix

Immix algorithm

Initial allocation

• Initially, all blocks are empty

• Thread-local allocator obtains a block from a global pool

• A full block triggers another request

• A full heap triggers a collection



Environment Intro to GC Immix

Immix algorithm

Initial allocation

• Initially, all blocks are empty

• Thread-local allocator obtains a block from a global pool

• A full block triggers another request

• A full heap triggers a collection



Environment Intro to GC Immix

Immix algorithm

Initial allocation

• Initially, all blocks are empty

• Thread-local allocator obtains a block from a global pool

• A full block triggers another request

• A full heap triggers a collection



Environment Intro to GC Immix

Immix algorithm (cont)

Identification

• Collector traces live objecs by performing a transitive closure

• Marks objects and their lines



Environment Intro to GC Immix

Immix algorithm (cont)

Reclamation
After trace completion the collector performs a
coarse-grained-sweep.

• Linearly scans line map to find free blocks and free lines

• Returns completely free blocks to global allocator

• Recycles (marks) partially free blocks for the next phase



Environment Intro to GC Immix

Immix algorithm (cont)

Reclamation
After trace completion the collector performs a
coarse-grained-sweep.

• Linearly scans line map to find free blocks and free lines

• Returns completely free blocks to global allocator

• Recycles (marks) partially free blocks for the next phase



Environment Intro to GC Immix

Immix algorithm (cont)

Reclamation
After trace completion the collector performs a
coarse-grained-sweep.

• Linearly scans line map to find free blocks and free lines

• Returns completely free blocks to global allocator

• Recycles (marks) partially free blocks for the next phase



Environment Intro to GC Immix

Immix algorithm (cont)

Steady state allocation

• Thread-local allocator resumes allocation into recycled
blocks

• Bump allocates into free lines in a block

• Once there are no more recycled blocks available, a new
one is requested from the global allocator

• Exhausted heap triggers another collection



Environment Intro to GC Immix

Immix algorithm (cont)

Steady state allocation

• Thread-local allocator resumes allocation into recycled
blocks

• Bump allocates into free lines in a block

• Once there are no more recycled blocks available, a new
one is requested from the global allocator

• Exhausted heap triggers another collection



Environment Intro to GC Immix

Immix algorithm (cont)

Steady state allocation

• Thread-local allocator resumes allocation into recycled
blocks

• Bump allocates into free lines in a block

• Once there are no more recycled blocks available, a new
one is requested from the global allocator

• Exhausted heap triggers another collection



Environment Intro to GC Immix

Immix algorithm (cont)

Steady state allocation

• Thread-local allocator resumes allocation into recycled
blocks

• Bump allocates into free lines in a block

• Once there are no more recycled blocks available, a new
one is requested from the global allocator

• Exhausted heap triggers another collection



Environment Intro to GC Immix

Details and policies

Basic algorithm works, but needs tuning to be competitive with
existing GCs



Environment Intro to GC Immix

Details and policies (cont)

Recycling policy

The allocator marks partly used blocks with atleast F lines as
recyclable. Experimenting shows that F = 1 works best on average.

Allocation policy

Immix allocates into recyclable blocks first, before touching any
free blocks. This is done to reduce competing for free blocks.
I.e. thread-local allocators compete against each other and a large
object space allocator for pages (indirectly over blocks).



Environment Intro to GC Immix

Details and policies (cont)

Parallelism (detailed study is still open)

• Synchronization happens only when obtaining/returning a
block from the global allocator

• TLAs can work unsychronized

• Transitive closure is performed parallel (worst case: marking
an object multiple times)



Environment Intro to GC Immix

Details and policies (cont)

Demand driven overflow allocation

• Definition: Medium sized objects are greater than one line

• Problem: Allocator wastes free space when searching for holes
to store medium sized objects

• Solution: Each immix allocator is paired with a contigous
allocator that uses empty blocks

(This is enough, since there are not that many medium sized objects [1])



Environment Intro to GC Immix

Details and policies (cont)

In numbers...

• 128 Byte lines

• 32 KByte blocks

Conservative marking

• Again: Most object are below 128 byte of size (small)

• → Most objects fit in max. 2 lines

• Exact marking of lines is very costly

• Only the first line of an object is marked

• The first line of a hole is skipped upon allocation (implicit
marking)

• Flags for small and medium ensure that this is still correct



Environment Intro to GC Immix

Defragmentation

Lightweight opportunistic evacuation

• Pure mark-region would be non-moving and suffer from
fragmentation

• Evacuation and/or compaction?

Candidate selection

• Round-robin policy like JRockit

• Defragmentation on demand like Metronome



Environment Intro to GC Immix

Defragmentation

Lightweight opportunistic evacuation

• Pure mark-region would be non-moving and suffer from
fragmentation

• Evacuation and/or compaction?

Candidate selection

• Round-robin policy like JRockit

• Defragmentation on demand like Metronome



Environment Intro to GC Immix

Defragmentation

Lightweight opportunistic evacuation

• Pure mark-region would be non-moving and suffer from
fragmentation

• Evacuation and/or compaction?

Candidate selection

• Round-robin policy like JRockit

• Defragmentation on demand like Metronome



Environment Intro to GC Immix

Defragmentation (cont)

Trigger

• If there exists one ore more recyclable blocks that have not
been that have not been used by the allocator in the previous
run

• If the previous collection did not yield enough free space

Which blocks?
Based on two histograms the collector decides which blocks should
be used as source and targets

• Marked, calc. at the end of each run [marked lines/holes]

• Available, calc. on demand [free lines/holes]



Environment Intro to GC Immix

Defragmentation (cont)

How?
Immix mixes marking and evacuation

• Candidate blocks have been selected before the collection run

• If an object in a candidate block is mark, it is also evacuated
and a forward pointer is set

⇒ Single pass, evacuation based defragmentation



Environment Intro to GC Immix

References

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, The DaCapo
benchmarks: Java benchmarking development and analysis, OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications (New York, NY, USA), ACM
Press, October 2006, pp. 169–190.

Stephen M. Blackburn and Kathryn S. McKinley, Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance, PLDI
’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation (New York, NY, USA), ACM, 2008,
pp. 22–32.


	Environment
	A very brief introduction to GC
	General
	Naïve Mark-Sweep
	Naïve Mark-Region

	Immix
	Algorithm
	Details and policies
	Defragmentation


