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Environment Intro to GC Immix

Why do we need GC? Where are we?

2008

• Programmers are more and more choosing managed languages
for modern applications (safety)

• Lots of short/medium lived objects

Problem

• ⇒ GC has a direct impact on program performance

• Tradeoff between time and space

Goal
Improve existing collection strategies
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Immix
(let’s figure out what this is about)

How does this work?

Mark-Region Garbage Collector

Which strategies, how, why?

• Space efficiency - space

• Fast collection - time

• Mutator performance - latency

⇒ 3 dimensions;
design space
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Environment - the bigger picture

• Java

• Jikes RVM

• GC on object level (not chunks of memory)
• Object model

Jikes Object

Object Header(s)

Type Information Block

Instance Fields

TIB

[]Fields

Field description

(RVMField)

GC flags

...

...

...
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A very brief overview

Only tracing GCs are discussed, but there do exist others, such as:

• Reference counting GCs

• Mixtures

Memory management utilizing a tracing GC

Basic approach

Determine which objects are reachable, discard the other ones
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A very brief overview (cont)

Terms

• Allocation of new objects

• Identification of live objects (reachability analysis)

• Reclamation of free memory

Types

• Moving vs non-moving

• Stop-the-world vs incremental

• Precise vs conservative (pointers)
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Reclamation strategies

Sweep-to-free-list

1. Allocate from a free list

2. Mark live objects

3. Sweep-to-free-list

Good: Time/space efficient
Bad: Locality
Examples: Mark-sweep (Näıve, tri-color)
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Reclamation strategies (cont)

Evacuate

1. Move live objects to new space

2. Reclaim old space

Good: Locality, contiguous allocation
Bad: 2x space, slow (copy)
Example: Semi-space

Compact

1. Move live objects to one end of the same space

Good: Locality, contiguous allocation
Bad: Multiple passes over heap, slow (copy)
Example: Mark-compact
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Näıve Mark-Sweep

• Mark phase
• Sweep phase
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Näıve Mark-Region
• Memory is split into regions
• States:

• Free
• Unavailable

• Bump allocator in region
• Collector marks regions with at least one live objects as

unavailable
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Näıve Mark-Region(cont)

Questions

• How big can/should regions be?

• How does defragmentation work?

Immix

Sneak preview:

• Operates on a block (coarse grained) and line (fine grained)
level

• Recycling of partially used blocks
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Immix algorithm

Initial allocation

• Initially, all blocks are empty

• Thread-local allocator obtains a block from a global pool

• A full block triggers another request

• A full heap triggers a collection
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Immix algorithm (cont)

Identification

• Collector traces live objecs by performing a transitive closure

• Marks objects and their lines
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Immix algorithm (cont)

Reclamation
After trace completion the collector performs a
coarse-grained-sweep.

• Linearly scans line map to find free blocks and free lines

• Returns completely free blocks to global allocator

• Recycles (marks) partially free blocks for the next phase
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Immix algorithm (cont)
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Immix algorithm (cont)

Steady state allocation

• Thread-local allocator resumes allocation into recycled
blocks

• Bump allocates into free lines in a block

• Once there are no more recycled blocks available, a new
one is requested from the global allocator

• Exhausted heap triggers another collection
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Immix algorithm (cont)

Steady state allocation
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Details and policies

Basic algorithm works, but needs tuning to be competitive with
existing GCs
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Details and policies (cont)

Recycling policy

The allocator marks partly used blocks with atleast F lines as
recyclable. Experimenting shows that F = 1 works best on average.

Allocation policy

Immix allocates into recyclable blocks first, before touching any
free blocks. This is done to reduce competing for free blocks.
I.e. thread-local allocators compete against each other and a large
object space allocator for pages (indirectly over blocks).
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Details and policies (cont)

Parallelism (detailed study is still open)

• Synchronization happens only when obtaining/returning a
block from the global allocator

• TLAs can work unsychronized

• Transitive closure is performed parallel (worst case: marking
an object multiple times)
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Details and policies (cont)

Demand driven overflow allocation

• Definition: Medium sized objects are greater than one line

• Problem: Allocator wastes free space when searching for holes
to store medium sized objects

• Solution: Each immix allocator is paired with a contigous
allocator that uses empty blocks

(This is enough, since there are not that many medium sized objects [1])
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Details and policies (cont)

In numbers...

• 128 Byte lines

• 32 KByte blocks

Conservative marking

• Again: Most object are below 128 byte of size (small)

• → Most objects fit in max. 2 lines

• Exact marking of lines is very costly

• Only the first line of an object is marked

• The first line of a hole is skipped upon allocation (implicit
marking)

• Flags for small and medium ensure that this is still correct
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Defragmentation

Lightweight opportunistic evacuation

• Pure mark-region would be non-moving and suffer from
fragmentation

• Evacuation and/or compaction?

Candidate selection

• Round-robin policy like JRockit

• Defragmentation on demand like Metronome
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Defragmentation (cont)

Trigger

• If there exists one ore more recyclable blocks that have not
been that have not been used by the allocator in the previous
run

• If the previous collection did not yield enough free space

Which blocks?
Based on two histograms the collector decides which blocks should
be used as source and targets

• Marked, calc. at the end of each run [marked lines/holes]

• Available, calc. on demand [free lines/holes]
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Defragmentation (cont)

How?
Immix mixes marking and evacuation

• Candidate blocks have been selected before the collection run

• If an object in a candidate block is mark, it is also evacuated
and a forward pointer is set

⇒ Single pass, evacuation based defragmentation
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