
David Gay, Rob Ennals and Eric Brewer

Presented by Andreas Unterweger
Concurrency and Memory Management Seminar, winter term 2010
University of Salzburg, Department of Computer Science



 Use and issues of manual MM
 HeapSafe description
 HeapSafe implementation
 HeapSafe performance
 Open issues
 Conclusion



 Memory leaks

 Allocated memory is not freed anymore

 Increases memory consumption

 Double frees

 Free is called more than once for the same pointer

 May lead to unexpected behaviour of MM

 Dangling pointers

 Pointer to an object which has already been freed

 May cause access violations



 Garbage collection may have side effects

 Changes of runtime behaviour of the program

 Once modified, the program will not work without
a garbage collector anymore

 Memory leaks may occur

 Proposed tool HeapSafe helps to make
manual memory management safe(r)



 A C-to-C translator allowing for safe(r) MM
 Helps to check correctness of malloc/free calls
 Implements reference counting to check for

dangling pointers on free calls (logs if there
are dangling references after the free call)

 Extends the malloc/free API by extra tools to
avoid reporting false positives

 Requires some changes in the program in 
order to work properly (requires type safety!)



 Reference count table for every 8 byte block 
of available memory

 Updated on every pointer write operation
 Additional byte for counter necessary (false

negatives on counts which are 0 mod. 256)
 Relies on lazy page allocation of Linux 

(reference count table in 32 bit environments
would yield a 512 MB table if fully used)





 Changes necessary

 Memory has to be zeroed after allocation

 Local variables which are pointers have to be
zeroed (global pointers are zeroed by default)

 Update pointers within structures and unions using
additional functions provided by the programmer

 Type-aware versions of memset, memcpy etc.

 Local variables (pointers) are tracked using
deferred reference counting (shadow stack)



Code/Description RC for 0x1000 RC for 0x1008

Initial state - -

char *p = malloc(16); 1 (assuming p = 0x1000) 0

char *q = p; 2 0

p += 8; 1 1

p = NULL; 1 0

free(q); 0 0

 Optimization: assume pointer operations leave
pointer within the same object check sum of
reference counts of object (all bytes) for zero



 Deal with temporary dangling pointers
 Delayed free scope: actual reference count

checking is done at end of scope, not at free
call within the scopemay hide double frees

 Nested scopes: scope absorption (delay
reference check until the outermost scope)

 Free calls outside of any scope are checked
immediately (and reported if necessary)



void free_cylic_list(struct cyclist *start)

{

struct cyclist *next, *cur = start;

do

{

next = cur->next;

free(cur);

cur = next;

} while (cur != start);

}

 Pointer “start“ dangles until the end of the loop



void free_cylic_list(struct cyclist *start)

{

struct cyclist *next, *cur = start;

delayed_free_start();

do

{

next = cur->next;

free(cur);

cur = next;

} while (cur != start);

delayed_free_end();

}

Delayed free scope
Delayed!



 Modify Makefile so that it calls HeapSafe
instead of gcc or any other C compiler

 Build the project and correct code according
to HeapSafe‘s warnings (type safety etc.)

 Remove any type casts and add type functions
 Run the program with test input and check the

output for logged dangling references
 Correct the code so that there are no dangling

references anymore (add scopes if necessary)



0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%



-20,00%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%



 Time overhead

 Zeroing allocated memory

 Reference count updating and checking

 Deferred reference check (shadow stack)

 Delayed freeing using delayed free scopes

 Space overhead

 Reference counts (table) and delayed free scopes

 Shadow stack

 Compile-time overhead and code changes



 Implementation not usable in multi-threaded
environments

 Reference counts are not updated atomically

 Pointer writes are not atomic

 Deferred references from other threads are not 
taken into account

 Increased memory consumption
 Increased runtime overhead
 More checks to deal with memory leaks etc.



 HeapSafe can help to find most cases of
dangling pointers and double frees in single-
threaded applications

 HeapSafe cannot detect memory leaks in its
current version, but could be extended

 Other tools (valgrind etc.) may help to deal 
with memory leaks and undetected errors

 HeapSafe can be used in production code
instead of being a debugging-only tool



[0] Gay, D., Ennals, R. and Brewer, E., Safe 
Manual Memory Management. In 
Proceedings of the 6th international 
symposium on Memory management 
(ISMM '07), pp. 2-14, 2007. 

[1] Scott Michael L., Programming Language 
Pragmatics (Third Edition). Morgan 
Kaufmann Publishers, San Francisco, 2009.



Questions?


