
David Gay, Rob Ennals and Eric Brewer

Presented by Andreas Unterweger
Concurrency and Memory Management Seminar, winter term 2010
University of Salzburg, Department of Computer Science



 Use and issues of manual MM
 HeapSafe description
 HeapSafe implementation
 HeapSafe performance
 Open issues
 Conclusion



 Memory leaks

 Allocated memory is not freed anymore

 Increases memory consumption

 Double frees

 Free is called more than once for the same pointer

 May lead to unexpected behaviour of MM

 Dangling pointers

 Pointer to an object which has already been freed

 May cause access violations



 Garbage collection may have side effects

 Changes of runtime behaviour of the program

 Once modified, the program will not work without
a garbage collector anymore

 Memory leaks may occur

 Proposed tool HeapSafe helps to make
manual memory management safe(r)



 A C-to-C translator allowing for safe(r) MM
 Helps to check correctness of malloc/free calls
 Implements reference counting to check for

dangling pointers on free calls (logs if there
are dangling references after the free call)

 Extends the malloc/free API by extra tools to
avoid reporting false positives

 Requires some changes in the program in 
order to work properly (requires type safety!)



 Reference count table for every 8 byte block 
of available memory

 Updated on every pointer write operation
 Additional byte for counter necessary (false

negatives on counts which are 0 mod. 256)
 Relies on lazy page allocation of Linux 

(reference count table in 32 bit environments
would yield a 512 MB table if fully used)





 Changes necessary

 Memory has to be zeroed after allocation

 Local variables which are pointers have to be
zeroed (global pointers are zeroed by default)

 Update pointers within structures and unions using
additional functions provided by the programmer

 Type-aware versions of memset, memcpy etc.

 Local variables (pointers) are tracked using
deferred reference counting (shadow stack)



Code/Description RC for 0x1000 RC for 0x1008

Initial state - -

char *p = malloc(16); 1 (assuming p = 0x1000) 0

char *q = p; 2 0

p += 8; 1 1

p = NULL; 1 0

free(q); 0 0

 Optimization: assume pointer operations leave
pointer within the same object check sum of
reference counts of object (all bytes) for zero



 Deal with temporary dangling pointers
 Delayed free scope: actual reference count

checking is done at end of scope, not at free
call within the scopemay hide double frees

 Nested scopes: scope absorption (delay
reference check until the outermost scope)

 Free calls outside of any scope are checked
immediately (and reported if necessary)



void free_cylic_list(struct cyclist *start)

{

struct cyclist *next, *cur = start;

do

{

next = cur->next;

free(cur);

cur = next;

} while (cur != start);

}

 Pointer “start“ dangles until the end of the loop



void free_cylic_list(struct cyclist *start)

{

struct cyclist *next, *cur = start;

delayed_free_start();

do

{

next = cur->next;

free(cur);

cur = next;

} while (cur != start);

delayed_free_end();

}

Delayed free scope
Delayed!



 Modify Makefile so that it calls HeapSafe
instead of gcc or any other C compiler

 Build the project and correct code according
to HeapSafe‘s warnings (type safety etc.)

 Remove any type casts and add type functions
 Run the program with test input and check the

output for logged dangling references
 Correct the code so that there are no dangling

references anymore (add scopes if necessary)



0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%



-20,00%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%



 Time overhead

 Zeroing allocated memory

 Reference count updating and checking

 Deferred reference check (shadow stack)

 Delayed freeing using delayed free scopes

 Space overhead

 Reference counts (table) and delayed free scopes

 Shadow stack

 Compile-time overhead and code changes



 Implementation not usable in multi-threaded
environments

 Reference counts are not updated atomically

 Pointer writes are not atomic

 Deferred references from other threads are not 
taken into account

 Increased memory consumption
 Increased runtime overhead
 More checks to deal with memory leaks etc.



 HeapSafe can help to find most cases of
dangling pointers and double frees in single-
threaded applications

 HeapSafe cannot detect memory leaks in its
current version, but could be extended

 Other tools (valgrind etc.) may help to deal 
with memory leaks and undetected errors

 HeapSafe can be used in production code
instead of being a debugging-only tool



[0] Gay, D., Ennals, R. and Brewer, E., Safe 
Manual Memory Management. In 
Proceedings of the 6th international 
symposium on Memory management 
(ISMM '07), pp. 2-14, 2007. 

[1] Scott Michael L., Programming Language 
Pragmatics (Third Edition). Morgan 
Kaufmann Publishers, San Francisco, 2009.



Questions?


