David Gay, Rob Ennals and Eric Brewer

Safe Manual Memory
Management




Overview

Use and issues of manual MM
HeapSafe description
HeapSafe implementation
HeapSafe performance

Open issues

Conclusion




Issues of manual MM

Memory leaks
Allocated memory is not freed anymore

Increases memory consumption
Double frees

Free is called more than once for the same pointer

May lead to unexpected behaviour of MM
Dangling pointers

Pointer to an object which has already been freed
May cause access violations



Why manual MM?

Garbage collection may have side effects
Changes of runtime behaviour of the program

Once modified, the program will not work without
a garbage collector anymore

Memory leaks may occur
Proposed tool HeapSafe helps to make
manual memory management safe(r)



What is HeapSafe?

A C-to-C translator allowing for safe(r) MM
Helps to check correctness of malloc/free calls
Implements reference counting to check for
dangling pointers on free calls (logs if there
are dangling references after the free call)
Extends the malloc/free API by extra tools to
avoid reporting false positives

Requires some changes in the program in
order to work properly (requires type safety!)



Reference counting |

Reference count table for every 8 byte block
of available memory

Updated on every pointer write operation
Additional byte for counter necessary (false
negatives on counts which are o mod. 256)
Relies on lazy page allocation of Linux
(reference count table in 32 bit environments
would yield a 512 MB table if fully used)



Reference count table example

1-byte 8-byte
ref counts memory blocks

———— *| Object A

---- - Object B

»| Object C

> Object D




Reference counting Il

Changes necessary
Memory has to be zeroed after allocation

Local variables which are pointers have to be
zeroed (global pointers are zeroed by default)

Update pointers within structures and unions using
additional functions provided by the programmer

Type-aware versions of memset, memcpy etc.
Local variables (pointers) are tracked using
deferred reference counting (shadow stack)



Reference counting example

Initial state

char *p = malloc(16); 1 (assumingp =0x1000) 0
char *g = p; 2 o
p += 8; 1 1
p = NULL; 1 o
free(q); o) 0

Optimization: assume pointer operations leave
pointer within the same object = check sum of
reference counts of object (all bytes) for zero



Delayed free scopes

Deal with temporary dangling pointers
Delayed free scope: actual reference count
checking is done at end of scope, not at free
call within the scope = may hide double frees
Nested scopes: scope absorption (delay
reference check until the outermost scope)
Free calls outside of any scope are checked
immediately (and reported if necessary)



Dangling pointer example

vold free cylic list(struct cyclist *start)
{
struct cyclist *next, *cur = start;
do
{
next = cur—->next;
free(cur) ;
cur = next;
} while (cur != start);

Pointer “start" dangles until the end of the loop



Delayed free scopes example

vold free cylic list(struct cyclist *start)

{

struct cyclist *next, *cur = start;
delayed free start():; )
do
{
next = cur->next; - Delayed free scope
free (cur),; Delayed!
cur = next;
} while (cur != start);

delayed free end();
J



Practical use of HeapSafe

Modify Makefile so that it calls HeapSafe
instead of gcc or any other C compiler

Build the project and correct code according
to HeapSafe's warnings (type safety etc.)
Remove any type casts and add type functions
Run the program with test input and check the
output for logged dangling references

Correct the code so that there are no dangling
references anymore (add scopes if necessary)



Benchmarks | (space overhead)

35,00%

30,00%

25,00%

20,00%

15,00%

10,00%

5,00%

0,00%




Benchmarks Il (runtime overhead)

100,00%
80,00%
60,00%
£40,00%
20,00%
0,00%
'S NS e > NS 7 S N 'S X AL C < A2 o} .
(é&\ iR &Q, @0 LN @@Q ((\Q,‘? QQ' ~o’\>Q ({\c 60@ @QJ o \Sb @ ®@ ] \J\\-\.“) &’o ‘0(& X &é, b'(’\é\
¢ g RO & e B q@ K@
WS

-20,00%



Sources of overhead

Time overhead

Zeroing allocated memory
Reference count updating and checking
Deferred reference check (shadow stack)

Delayed freeing using delayed free scopes
Space overhead
Reference counts (table) and delayed free scopes

Shadow stack
Compile-time overhead and code changes



Open issues

Implementation not usable in multi-threaded
environments

Reference counts are not updated atomically
Pointer writes are not atomic

Deferred references from other threads are not
taken into account

Increased memory consumption
Increased runtime overhead
More checks to deal with memory leaks etc.



Conclusion

HeapSafe can help to find most cases of
dangling pointers and double frees in single-
threaded applications

HeapSafe cannot detect memory leaks in its
current version, but could be extended
Other tools (valgrind etc.) may help to deal
with memory leaks and undetected errors
HeapSafe can be used in production code
instead of being a debugging-only tool



References

[o] Gay, D., Ennals, R. and Brewer, E., Safe

Manual Memory Management. In
Proceedings of the 6th international
symposium on Memory management
(ISMM '07), pp. 2-14, 2007.

Scott Michael L., Programming Language
Pragmatics (Third Edition). Morgan
Kaufmann Publishers, San Francisco, 200q.



Thank you for your attention!

Questions?



