
Concurrent Data Structures

Mark Moir and Nir Shavit
Sun Microsystems Laboratories

presented by

Simon Kranzer

Concurrency and Memory Management Seminar

WS 2010

University of Salzburg

Table of Contents

 The Authors

 Motivation

 Introduction

 Designing Concurrent Data Structures

 Shared Counters and Fetch-and-Φ

 Stacks and Queues

 Pools

 Linked Lists

 Hash Tables

 Search Trees

 Priority Queues
2

The Authors – Mark Moir

 Dr. Mark Moir

◦ received the B.Sc.(Hons.) degree in Computer
Science from Victoria University of Wellington, New
Zealand in 1988, and the Ph.D. degree in Computer
Science from the University of North Carolina at
Chapel Hill, USA in 1996.

◦ from August 1996 until June 2000, he was an
assistant professor in the Department of Computer
Science at the University of Pittsburgh.

◦ in June 2000, he joined Sun Microsystems
Laboratories, where he is now a Distinguished
Engineer and the Principal Investigator of the
Scalable Synchronization Research Group.

[2]
3

The Authors – Nir Shavit

 Dr. Nir Shavit

◦ received the MS degree in Computer Science from
Technion, Israel Institute of Technology in 1986,
and the Ph.D. degree in Computer Science from the
Hebrew University in Jerusalem, Israel in 1990

◦ was a postdoctoral researcher at IBM Almaden,
Stanford, and MIT, visiting faculty at MIT, and is a
faculty member in the school of computer science
at Tel-Aviv University.

◦ is a researcher for Sun Microsystems Laboratories,
working in the Scalable Synchronization Research
Group.

◦ is with Maurice Herlihy the joint recipient of the
2004 ACM/EATCS Gödel Price

[2]
4

Motivation

 In shared-memory multiprocessing multiple
threads are executed concurrently

 Communication and synchronization is done
via data structures in shared-memory

 Thus these data structures have to be

◦ efficient

◦ scalable

◦ correct

[1]
5

Introduction

 Moir and Shavit provide an overview of the
challenges of designing concurrent data
structures
and

 a summary of relevant work for some
important data structures.

 Popular data structures have been chosen to
illustrate key design issues

[1]
6

Designing Concurrent DS

 Concurrent DS Challenges

 Performance

 Blocking

 Nonblocking

 Measuring Complexity

 Proofing Correctness

 Locks, Barriers, Transactions

[1]
7

Concurrent DS Challenges

 Threads, executed concurrently on different
processors/cores are influenced by

◦ Scheduling

◦ Page Faults

◦ Interrupts

◦ etc.

 Performance is influenced by

◦ Memory layout

◦ Processor layout

◦ Layout of data in memory

 Hard to design and verify a correct DS
implementation

[1]
8

Example: Shared Counter

 fetch-and-inc

◦ Return value and increment counter by one

 Straight forward implementation does not
comply with concurrency (bad interleaving)

◦ x = counter;
counter+=1;
return x;

 The use of a mutex solves the problem but
creates many more

[1]
9

Concurrent DS
Performance

 Amdahls Law

◦ n… Number of Proccessors

◦ p… Fraction of job that can be parallelized

 Example:
If only 10% of an application can not be
implemented in parallel speedup is only 5.3
on a machine with 10 processors

[1],[3]

n

p
p

S

1

1

10

Concurrent DS
Performance

 Memory Contention

◦ Multiple threads attempting to access the same
location in shared memory

◦ In a cache-coherent system this means heavy loads

 If data location is locked by a thread which
is delayed (waits on I/O or whatever) all
other threads have to wait too

[1]
11

Concurrent DS
Blocking

 Memory contention can be reduced using a
fine-grained locking scheme

◦ Different parts of a DS can be accessed
concurrently

 Operations can be spread out in time

◦ Backoff algorithm

◦ Combining trees

[1]
12

Concurrent DS
Blocking

 Combining trees

◦ Join concurrent operations

◦ Winner transfers combined result/value to DS

◦ Local spinning of losers in a cash-coherent
multiprocessor system

◦ Speedup of O(P/log(P)) with P as the number of
threads

 Combining trees drawbacks

◦ False sharing

◦ Do not scale on low loads

◦ Delays threads failed to combine

[1]
13

Concurrent DS
Blocking

 Blocking DS can scale if there is a good
balance between using enough blocking to
maintain correctness, while minimizing
blocking in order to allow concurrent
operations to proceed in parallel

[1]
14

Concurrent DS
Nonblocking

 Nonblocking progress conditions

◦ Wait-freedom guarantees that an operation will
complete after a finite number of its own steps not
influenced by others

◦ Lock-freedom guarantees that one of the
concurrent operations completes after a finite
number of steps

◦ Obstruction-freedom means that an operation
completes in a finite number of own steps after
interference form other operations stopped

[1]
15

Concurrent DS
Nonblocking

 Implementation of lock free fetch-and-inc

◦ Atomic instructions provided by hardware or OS
 CAS (Compare and Swap)

 LL/SC (Load-linked/Store-conditional)

◦ As CAS and LL/SC are universal they can be
adopted to any DS if atomicity is provided

 Drawbacks

◦ Sequential bottleneck

◦ More difficult to handle because a lock can prevent
other threads from interfering

[1]
16

Concurrent DS
Measuring Complexity

 Idealized models do not reflect the real-
world behavior of the DS because it is
dominated from

◦ Cost of contention

◦ Cache behavior

◦ Cost of universal synchronization

◦ Arrival rates

◦ Backoff delys

◦ Memory layout, etc.

 Concurrent DS design is compared
empirically by running them using micro-
benchmarks

[1]
17

Concurrent DS
Proofing Correctness

 As operations on sequential DS are executed
one-at-a time correctness can be that the
resulting sequence of operations respect
sequential semantics

 For concurrent DS sequential consistency is
a common condition

◦ The total order preserves the order of operations
executed by each thread

[1]
18

Concurrent DS
Proofing Correctness cont.

 Linearizability

◦ DS is sequentially consistent

◦ Total ordering respects the real-time ordering
among the executed operations

 Quiescent consistency

◦ No real-time ordering

◦ Every operation executed after a state without
operations must be ordered after operations before
that state

[1]
19

Concurrent DS
Key Mechanisms

 Locks

◦ Guarantee mutual exclusion

◦ Spinlocks

◦ Exponential backoff

◦ Queuelocks

◦ Abortable (queue)locks

◦ Preemption-save locks

◦ Reader-Writer locks

◦ Group mutual exclusion

[1]
20

Concurrent DS
Key Mechanisms cont.

 Barriers

◦ Collectively holds threads at a given point

◦ Counter with number of threads

◦ Spin on local memory

◦ Diffusing computation tree
 Threads are owners of nodes in a binary tree

 Waiting for the arrival of their children

 Root node releases all threads if all children are done

[1]
21

Concurrent DS
Key Mechanisms cont.

 Transactions

◦ Treat sections code that access multiple memory
locations as atomic

◦ Relational databases

◦ Hardware-based transactional memory

◦ Software transactional memory

[1]
22

Shared Counters and
Fetch-and-Φ

 Combining trees

◦ Blocking

 Counting Networks

◦ Acyclic networks constructed from balancers

◦ Tokens arrive at a balancer at arbitrary times and
are output in a balanced way

◦ Only capable of reduced class of operations like
fetch-and-inc

◦ Lineraizable only with drawbacks

◦ Lock-free, quiescent consistent

[1]
23

Stacks and Queues

 Stacks

◦ A concurrent stack is a data structure linearizable
to a sequential stack that provides push and pop
operations with the usual LIFO semantics

◦ Lock-based implementation based on sequential
linked lists using a top pointer and a global lock

 Contention

 Sequential bottleneck

◦ Lock-based implementation using combining
 Does not scale on low loads

[1]
24

Stacks and Queues

 Stacks cont.

◦ Lock-free implementation using CAS and a single-
linked list with top pointer

 Sequential bottleneck (top pointer)

 Faster than lock-based but does not scale under heavy
load

 Queues

 Dequeues

[1]
25

Stacks and Queues

 Queues

◦ A concurrent queue is a data structure linearizable
to a sequential queue that provides enqueue and
dequeue operations with the usual FIFO semantics

◦ Lock-based implementation with separate locks for
head and tail pointer of linked list

 Concurrent dequeue and enqueue

 Additional dummy element needed that head pointer
never = tail pointer

[1]
26

Stacks and Queues

 Queues cont.

◦ Lock-free CAS-based implementation with access to
both ends of the queue using CAS in stead of locks

 Dummy node

 Operations can access already removed elements

[1]
27

Stacks and Queues

 Dequeues

◦ A concurrent double-ended queue is a linearizable
concurrent data structure that generalizes
concurrent stacks and queues by allowing pushes
and pops at both ends

◦ Lock-based implementation as with queue

◦ NO lock-free implementation with concurrent
operations on both ends known

[1]
28

Pools, Linked Lists,
Hash Tables, Search Trees

 Similar to stacks and queues there exist
lock-free and lock-based implementations
for many other concurrent DS

 The named are covered in the survey but
not discussed here because of the lack of
time

[1]
29

Priority Queues

 A concurrent priority queue is a data
structure linearizable to a sequential priority
queue that provides insert and delete-min
operations with the usual priority queue
semantics

 Lock-based implementation using fine
grained locking organized like a heap

 Lock-free implementation using a concurrent
skiplist

[1]
30

References

[1] M. Moir and N. Shavit, Concurrent data structures.
In Handbook of Data Structures and Applications, D.
Metha and S. Sahni Editors, pages 47-14 - 47-30,
2007. Chapman and Hall/CRC Press.

[2] Sun Microsystems Laboratories, People, an online
version is available at http://labs.oracle.com/people/
(10.11.2010)

[3] M. Herlihy and N. Shavit, The Art of Multiprocessor
Programming. 2008. Elsevier Inc.

31

Discussion

32

