
Concurrent Data Structures

Mark Moir and Nir Shavit
Sun Microsystems Laboratories

presented by

Simon Kranzer

Concurrency and Memory Management Seminar

WS 2010

University of Salzburg



Table of Contents

 The Authors

 Motivation

 Introduction

 Designing Concurrent Data Structures

 Shared Counters and Fetch-and-Φ

 Stacks and Queues

 Pools

 Linked Lists

 Hash Tables

 Search Trees

 Priority Queues
2



The Authors – Mark Moir

 Dr. Mark Moir

◦ received the B.Sc.(Hons.) degree in Computer 
Science from Victoria University of Wellington, New 
Zealand in 1988, and the Ph.D. degree in Computer 
Science from the University of North Carolina at 
Chapel Hill, USA in 1996. 

◦ from August 1996 until June 2000, he was an 
assistant professor in the Department of Computer 
Science at the University of Pittsburgh. 

◦ in June 2000, he joined Sun Microsystems 
Laboratories, where he is now a Distinguished 
Engineer and the Principal Investigator of the 
Scalable Synchronization Research Group. 

[2]
3



The Authors – Nir Shavit

 Dr. Nir Shavit

◦ received the MS degree in Computer Science from 
Technion, Israel Institute of Technology in 1986, 
and the Ph.D. degree in Computer Science from the 
Hebrew University in Jerusalem, Israel in 1990

◦ was a postdoctoral researcher at IBM Almaden, 
Stanford, and MIT, visiting faculty at MIT, and is a 
faculty member in the school of computer science 
at Tel-Aviv University. 

◦ is a researcher for Sun Microsystems Laboratories, 
working in the Scalable Synchronization Research 
Group. 

◦ is with Maurice Herlihy the joint recipient of the 
2004 ACM/EATCS Gödel Price

[2]
4



Motivation

 In shared-memory multiprocessing multiple 
threads are executed concurrently

 Communication and synchronization is done 
via data structures in shared-memory

 Thus these data structures have to be  

◦ efficient

◦ scalable

◦ correct

[1]
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Introduction

 Moir and Shavit provide an overview of the 
challenges of designing concurrent data 
structures 
and

 a summary of relevant work for some 
important data structures.

 Popular data structures have been chosen to 
illustrate key design issues

[1]
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Designing Concurrent DS

 Concurrent DS Challenges

 Performance

 Blocking

 Nonblocking

 Measuring Complexity

 Proofing Correctness 

 Locks, Barriers, Transactions

[1]
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Concurrent DS Challenges

 Threads, executed concurrently on different 
processors/cores are influenced by

◦ Scheduling

◦ Page Faults

◦ Interrupts 

◦ etc.

 Performance is influenced by

◦ Memory layout

◦ Processor layout

◦ Layout of data in memory

 Hard to design and verify a correct DS 
implementation

[1]
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Example: Shared Counter

 fetch-and-inc

◦ Return value and increment counter by one

 Straight forward implementation does not 
comply with concurrency (bad interleaving)

◦ x = counter;
counter+=1;
return x;

 The use of a mutex solves the problem but 
creates many more

[1]
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Concurrent DS 
Performance

 Amdahls Law

◦ n… Number of Proccessors

◦ p… Fraction of job that can be parallelized

 Example:
If only 10% of an application can not be 
implemented in parallel speedup is only 5.3 
on a machine with 10 processors

[1],[3]
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Concurrent DS 
Performance

 Memory Contention

◦ Multiple threads attempting to access the same 
location in shared memory

◦ In a cache-coherent system this means heavy loads

 If data location is locked by a thread which 
is delayed (waits on I/O or whatever) all 
other threads have to wait too

[1]
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Concurrent DS 
Blocking

 Memory contention can be reduced using a 
fine-grained locking scheme

◦ Different parts of a DS can be accessed 
concurrently

 Operations can be spread out in time

◦ Backoff algorithm

◦ Combining trees

[1]
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Concurrent DS 
Blocking

 Combining trees

◦ Join concurrent operations

◦ Winner transfers combined result/value to DS

◦ Local spinning of losers in a cash-coherent 
multiprocessor system

◦ Speedup of O(P/log(P)) with P as the number of 
threads

 Combining trees drawbacks

◦ False sharing

◦ Do not scale on low loads

◦ Delays threads failed to combine

[1]
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Concurrent DS 
Blocking

 Blocking DS can scale if there is a good 
balance between using enough blocking to 
maintain correctness, while minimizing 
blocking in order to allow concurrent 
operations to proceed in parallel

[1]
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Concurrent DS 
Nonblocking

 Nonblocking progress conditions

◦ Wait-freedom guarantees that an operation will 
complete after a finite number of its own steps not 
influenced by others

◦ Lock-freedom guarantees that one of the 
concurrent operations completes after a finite 
number of steps

◦ Obstruction-freedom means that an operation 
completes in a finite number of own steps after 
interference form other operations stopped

[1]
15



Concurrent DS 
Nonblocking

 Implementation of lock free fetch-and-inc

◦ Atomic instructions provided by hardware or OS
 CAS (Compare and Swap)

 LL/SC (Load-linked/Store-conditional)

◦ As CAS and LL/SC are universal they can be 
adopted to any DS if atomicity is provided

 Drawbacks

◦ Sequential bottleneck

◦ More difficult to handle because a lock can prevent 
other threads from interfering

[1]
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Concurrent DS 
Measuring Complexity

 Idealized models do not reflect the real-
world behavior of the DS because it is 
dominated from 

◦ Cost of contention

◦ Cache behavior

◦ Cost of universal synchronization

◦ Arrival rates

◦ Backoff delys

◦ Memory layout, etc.

 Concurrent DS design is compared 
empirically by running them using micro-
benchmarks

[1]
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Concurrent DS 
Proofing Correctness

 As operations on sequential DS are executed 
one-at-a time correctness can be that the 
resulting sequence of operations respect 
sequential semantics

 For concurrent DS sequential consistency is 
a common condition

◦ The total order preserves the order of operations 
executed by each thread

[1]
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Concurrent DS 
Proofing Correctness cont.

 Linearizability

◦ DS is sequentially consistent

◦ Total ordering respects the real-time ordering 
among the executed operations

 Quiescent consistency

◦ No real-time ordering

◦ Every operation executed after a state without 
operations must be ordered after operations before 
that state

[1]
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Concurrent DS 
Key Mechanisms

 Locks

◦ Guarantee mutual exclusion

◦ Spinlocks

◦ Exponential backoff

◦ Queuelocks

◦ Abortable (queue)locks

◦ Preemption-save locks

◦ Reader-Writer locks

◦ Group mutual exclusion

[1]
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Concurrent DS 
Key Mechanisms cont.

 Barriers

◦ Collectively holds threads at a given point

◦ Counter with number of threads

◦ Spin on local memory

◦ Diffusing computation tree
 Threads are owners of nodes in a binary tree

 Waiting for the arrival of their children

 Root node releases all threads if all children are done

[1]
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Concurrent DS 
Key Mechanisms cont.

 Transactions

◦ Treat sections code that access multiple memory 
locations as atomic

◦ Relational databases

◦ Hardware-based transactional memory

◦ Software transactional memory

[1]
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Shared Counters and 
Fetch-and-Φ

 Combining trees 

◦ Blocking

 Counting Networks

◦ Acyclic networks constructed from balancers

◦ Tokens arrive at a balancer at arbitrary times and 
are output in a balanced way

◦ Only capable of reduced class of operations like 
fetch-and-inc

◦ Lineraizable only with drawbacks

◦ Lock-free, quiescent consistent

[1]
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Stacks and Queues

 Stacks

◦ A concurrent stack is a data structure linearizable
to a sequential stack that provides push and pop 
operations with the usual LIFO semantics

◦ Lock-based implementation based on sequential 
linked lists using a top pointer and a global lock

 Contention

 Sequential bottleneck

◦ Lock-based implementation using combining
 Does not scale on low loads

[1]
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Stacks and Queues

 Stacks cont.

◦ Lock-free implementation using CAS and a single-
linked list with top pointer

 Sequential bottleneck (top pointer)

 Faster than lock-based but does not scale under heavy 
load

 Queues

 Dequeues

[1]
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Stacks and Queues

 Queues

◦ A concurrent queue is a data structure linearizable
to a sequential queue that provides enqueue and 
dequeue operations with the usual FIFO semantics

◦ Lock-based implementation with separate locks for 
head and tail pointer of linked list

 Concurrent dequeue and enqueue

 Additional dummy element needed that head pointer 
never = tail pointer

[1]
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Stacks and Queues

 Queues cont.

◦ Lock-free CAS-based implementation with access to 
both ends of the queue using CAS in stead of locks

 Dummy node

 Operations can access already removed elements

[1]
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Stacks and Queues

 Dequeues

◦ A concurrent double-ended queue is a linearizable
concurrent data structure that generalizes 
concurrent stacks and queues by allowing pushes 
and pops at both ends

◦ Lock-based implementation as with queue

◦ NO lock-free implementation with concurrent 
operations on both ends known

[1]
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Pools, Linked Lists,
Hash Tables, Search Trees

 Similar to stacks and queues there exist 
lock-free and lock-based implementations  
for many other concurrent DS

 The named are covered in the survey but 
not discussed here because of the lack of 
time

[1]
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Priority Queues

 A concurrent priority queue is a data 
structure linearizable to a sequential priority 
queue that provides insert and delete-min 
operations with the usual priority queue 
semantics

 Lock-based implementation using fine 
grained locking organized like a heap

 Lock-free implementation using a concurrent 
skiplist

[1]
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