Free-Me

A Static Analysis for Automatic Individual Object Reclamation

Samuel Z. Guyer, Kathryn S. McKinley, Daniel Frampton

presented by Stephanie Stroka
University of Salzburg

January 13, 2011



Outline

Motivation
m State of the Art
m Free-Me |ldea

Compiler Analysis
m Flow-insensitive pointer analysis
m Flow-sensitive pointer analysis
m Free placement

Runtime Support for Free-Me and Methodology
m Runtime Support
m Lazy Free-List
m Bump-Pointer Allocation
m Optimization Techniques

B Results
H Conclusion

Stephanie Stroka Free-Me



Motivation
°

State of the Art

Manual Memory Management

m Can be more efficient

m Dangling pointers
m Double free

m Reachable and Unreachable memory leaks

Automatic Memory Management

m Stop-the-World/Concurrent/Incremental

m No dangling pointer bugs
m No double free bugs

m Reachable memory leaks

Stephanie Stroka Free-Me



Motivation
€000

Free-Me idea

Why not just combine them?

Combine benefits of both systems
Discard disadvantages of both systems

Reclaim memory quickly

Reduce programmer effort

Related work

m Stack allocation, Escape Analysis

m Region Allocation

Stephanie Stroka Free-Me



Motivation
0000

Free-Me idea

m Identify points in the program where memory can be discarded
m Allow handling of factory methods
m Discard memory immediately

m Reduce number of GC cycles

Stephanie Stroka Free-Me



Motivation
0000

Code example

=

public void parse(InputStream stream) {

2 while(...) {

3 String idName = stream.readToken() ;

4 Identifier id = symbolTable.lookup(idName) ;
5 if (id == null) {

6 id = new Identifier(idName) ;

7 symbolTable.add (idName, id);

8 }

9 computeOn (id) ;

10 }

11 F

Stephanie Stroka Free-Me



Motivation
oooe

Code example

public void parse(InputStream stream) {

un

2 while(...) {

3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName) ;
5 if(id == null) A{

6 id = new Identifier(idName);

7 symbolTable.add(idName, id);

8 }

9 else {

10 // idName is no longer used

11 free(idName) ;

12 }

13 computeOn (id) ;

14 }

15

Stephanie Stroka Free-Me



Compiler Analysis

Compiler Analysis

The two kinds of points-to analysis

m Flow-insensitive pointer analysis
= To identify allocation nodes and factory methods

m Flow-sensitive liveness analysis
= To inserting calls to free ()

Stephanie Stroka Free-Me



Compiler Analysis
®00

Flow-insensitive pointer analysis

)

(10)

while... | [ (exit) |

9)

4
)

[[idName - stream.readToken() |
rz)l
[[ido = symbolTable.lookup (idName) |

[ symbolTable.put (idName, idl) |

(6)
id2 = ®(ido,id1)

@)

Figure 1: Single Static Assignment (SSA)

Stephanie Stroka

symbolTable

Figure 2: Connectivity Graph

Free-Me



Compiler Analysis
0®0

Analyzing assignments

|object | |fie|d71| |fie|d72|

Object object = new Object();
Field field_1 = new Field();
object.field = field_1;

Field field_2 = object.field;

W=

Figure 3: Connectivity Graph

ASSIGNMENT POINTS-TO SET

vl = v2; PtsTo(v1)U = PtsTo(v2)
v = Cls.f; PtsTo(v)U = {Ng}t
Cls.f = v; PtsTo(Ng)U = PtsTo(v)
vl.f = v2; Vn € PtsTo(v1)
PtsTo(n)U = PtsTo(v2)
vl = v2.f; PtsTo(v1)U = PtsTo * (v2)?

Table 1: Rules for assignments

1NG: Node for all globals

2 - .
PtsTox: Transitive closure of points-to

Stephanie Stroka Free-Me



Compiler Analysis
ooe

Procedure summary

Method summaries aim to...
® summarize the intra-method connectivities
m keep record of passed parameters in callee-methods
m identify "hot” methods

m Methods with allocation calls
m Methods with factory calls

NODES \ PROCEDURE SUMMARY
ijl € PtsTo = (p;) record entry (pi, pj)
N/j2 € PtsTo = (p;) record entry (p;, *p;)
Npj € PtsTo * (Ng) record entry (global, p;)
Npj € PtsTo x (return) record entry (return, p;)

PtsTo x (return) C NA3 record method is a factory

Table 2: Records for project summary

1 .

Nodes for targets in parameters
2 .

Parameter "inner" nodes

3 .
Allocation nodes

Stephanie Stroka Free-Me



Compiler Analysis
°0

Flow-sensitive pointer analysis / liveness analysis

©
[Cwnite.. . ] 9 [ (exit) |
A

el

oD @ D

[(idName = stream.readToken() |
@) ~— ——~

[ ido = symbolTable.lookup (idName) |

Figure 5: Connectivity Graph

9)

[ symbolTable.put (idName, idl) |

plive = {1,6,8,9}

J (6)
id2 = ®(ido,id1)

@)

computeOn (1d2)

reach ={1,2,3,4,5,6,8,9}

Figure 6: Liveness of idName
Figure 4: Single Static Assignment (SSA)

Stephanie Stroka Free-Me



Compiler Analysis
oe

Result

live = 2,3,4,5}
plive + {1,5,6,8,9}

plive = {1,6,8,9}

reach = {1,2,3,4,5,6,8,9}

Figure 7: Liveness of idName

Result of liveness analysis on idName

— readToken is reachable from program points {1,2,3,4,5,6,8,9},
BUT not from program point 7

Stephanie Stroka Free-Me



Compiler Analysis
°

Free placement

here to put free()?

m Place free() as soon as possible

m Avoid excessive calls to free()

m Use temporary variables for every object that will be freed

1 // Wrong: 1 //.CarTect: .
j = ] 2 object = new Object();
2 object = new Object(); 7 !
i = i 3 tmp0 = object;
3 object = o.field; P ° t
4 free(object) ; 4 object = o.field;
’ 5 free (tmp0) ;
6 tmp0 = null;

Stephanie Stroka Free-Me



Runtime Support
°

Runtime Support

Implementations of free() for different allocators

m Size-segregated free-list implementation

m Bump-Pointer implementation

Implementations of free() for different collectors

m Mark-Sweep

m Reference Counting
m Copying Collector
m Generational Garbage Collector

Stephanie Stroka Free-Me



Runtime Support
.

Lazy Free-List

m Supports k size-segregated free-list

m Incremental re-usage of memory

m Less free-list creations, memory tracing and GC cycles

size-

T

free-list

[
Eva
I

reae [ 1 [T1 [ [1-

Figure 8: free() on segregated free-list

Stephanie Stroka Free-Me



Runtime Support
®0

Bump-Pointer Allocation

Bump-Pointer Allocation

m Three implementations:

m Unbump: Last allocated, first deallocated

® Unbump Region: Memorize nearest, reclaimed region and
unbump

m Unreserve: Diminish reserved copying memory

m Slow memory fill-up, less GC cycles

m Smaller reserved region for copy process

Stephanie Stroka Free-Me



Runtime Support
oe

Bump-Pointer Allocation

obj

NiR iR

T cursor

Tcursor

Figure 9: Unbump (1) Figure 10: Unbump (2)

l unbumpHead unbumpHead
. ‘ U U—‘ |
obj cursor cursor
Figure 11: Unbump Region (1) Figure 12: Unbump Region (2)

Stephanie Stroka Free-Me



Runtime Support
°

Optimization Techniques

m Analyze Java standard class libraries during JikesRVM boot
m Pre-compute method summaries offline

m Pre-compile hot methods

= almost doubles the compile time :-(

Stephanie Stroka Free-Me



Results

Results

Is Free-Me really saving memory?!

m Benchmarks: SPECjvm98, pseudojbb, SPECjbb2000, DaCapo
m On average, Free-Me frees 32% of memory

m Max: 81% of memory savings

m Compared to stack allocation: +7%

m Without conditional frees: +11%

Stephanie Stroka Free-Me



Results

Results

Is Free-Me really saving time?!

m Mark-Sweep Collector:

m 5% - 50%

m Improves temporal locality and reduces allocator work
m Generational Collector:

m Avg: No effect on GC time :-(
m BUT: Improves collector time

Stephanie Stroka Free-Me



Conclusion

Conclusion

Conclusion

m Analysis identifies a large fraction of short-lived objects
m Analysis is not effective on

m large data structures
m containers classes
m conditional factories

m Provides incremental collection of garbage

m Works well on MS, but not on a Generational Collector

Stephanie Stroka Free-Me



	Motivation
	Compiler Analysis
	Runtime Support for Free-Me and Methodology
	Results
	Conclusion

