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State of the Art

Manual Memory Management

Can be more efficient

Dangling pointers

Double free

Reachable and Unreachable memory leaks

Automatic Memory Management

Stop-the-World/Concurrent/Incremental

No dangling pointer bugs

No double free bugs

Reachable memory leaks
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Free-Me idea

Why not just combine them?

Combine benefits of both systems

Discard disadvantages of both systems

Reclaim memory quickly

Reduce programmer effort

Related work

Stack allocation, Escape Analysis

Region Allocation
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Free-Me idea

Goals

Identify points in the program where memory can be discarded

Allow handling of factory methods

Discard memory immediately

Reduce number of GC cycles

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Code example

1 public void parse(InputStream stream) {
2 while(...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName);
5 if(id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 computeOn(id);

10 }
11 }
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Code example

1 public void parse(InputStream stream) {
2 while(...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName);
5 if(id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 else {

10 // idName is no longer used

11 free(idName);
12 }
13 computeOn(id);
14 }
15 }
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Compiler Analysis

The two kinds of points-to analysis

Flow-insensitive pointer analysis
⇒ To identify allocation nodes and factory methods

Flow-sensitive liveness analysis
⇒ To inserting calls to free()
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Flow-insensitive pointer analysis

Figure 1: Single Static Assignment (SSA)

Figure 2: Connectivity Graph
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Analyzing assignments

1 Object object = new Object();

2 Field field_1 = new Field();

3 object.field = field_1;

4 Field field_2 = object.field;

object field_1 field_2

new Object

(1) (2)

(3)
(4)

(5)

new Field

Figure 3: Connectivity Graph

Assignment Points-to set

v1 = v2; PtsTo(v1)∪ = PtsTo(v2)

v = Cls.f ; PtsTo(v)∪ = {NG}1
Cls.f = v ; PtsTo(NG )∪ = PtsTo(v)
v1.f = v2; ∀n ∈ PtsTo(v1)

PtsTo(n)∪ = PtsTo(v2)

v1 = v2.f ; PtsTo(v1)∪ = PtsTo ∗ (v2)2

Table 1: Rules for assignments

1
NG : Node for all globals

2
PtsTo∗: Transitive closure of points-to
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Procedure summary

Method summaries aim to...

summarize the intra-method connectivities

keep record of passed parameters in callee-methods
identify ”hot” methods

Methods with allocation calls
Methods with factory calls

Nodes Procedure summary

Npj
1 ∈ PtsTo ∗ (pi ) record entry (pi , pj )

NIj
2 ∈ PtsTo ∗ (pi ) record entry (pi , ∗pj )

Npj ∈ PtsTo ∗ (NG ) record entry (global, pj )
Npj ∈ PtsTo ∗ (return) record entry (return, pj )

PtsTo ∗ (return) ⊂ NA
3 record method is a factory

Table 2: Records for project summary

1
Nodes for targets in parameters

2
Parameter ”inner” nodes

3
Allocation nodes
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Flow-sensitive pointer analysis / liveness analysis

Figure 4: Single Static Assignment (SSA)

Figure 5: Connectivity Graph

Figure 6: Liveness of idName
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Result

Figure 7: Liveness of idName

Result of liveness analysis on idName

→ readToken is reachable from program points {1,2,3,4,5,6,8,9},
BUT not from program point 7
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Free placement

Where to put free()?

Place free() as soon as possible

Avoid excessive calls to free()

Use temporary variables for every object that will be freed

1 // Wrong:

2 object = new Object();

3 object = o.field;

4 free(object);

1 // Correct:

2 object = new Object();

3 tmp0 = object;

4 object = o.field;

5 free(tmp0);

6 tmp0 = null;
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Runtime Support

Implementations of free() for different allocators

Size-segregated free-list implementation

Bump-Pointer implementation

Implementations of free() for different collectors

Mark-Sweep

Reference Counting

Copying Collector

Generational Garbage Collector
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Lazy Free-List

Lazy Free-List

Supports k size-segregated free-list

Incremental re-usage of memory

Less free-list creations, memory tracing and GC cycles

1 k

...size-
segregated 
free-list

2 3 4

free()

heap ...

Figure 8: free() on segregated free-list
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Bump-Pointer Allocation

Bump-Pointer Allocation

Three implementations:

Unbump: Last allocated, first deallocated
Unbump Region: Memorize nearest, reclaimed region and
unbump
Unreserve: Diminish reserved copying memory

Slow memory fill-up, less GC cycles

Smaller reserved region for copy process
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Bump-Pointer Allocation

Figure 9: Unbump (1) Figure 10: Unbump (2)

Figure 11: Unbump Region (1) Figure 12: Unbump Region (2)
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Optimization Techniques

Three steps

Analyze Java standard class libraries during JikesRVM boot

Pre-compute method summaries offline

Pre-compile hot methods

⇒ almost doubles the compile time :-(
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Results

Is Free-Me really saving memory?!

Benchmarks: SPECjvm98, pseudojbb, SPECjbb2000, DaCapo

On average, Free-Me frees 32% of memory

Max: 81% of memory savings

Compared to stack allocation: +7%

Without conditional frees: +11%
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Results

Is Free-Me really saving time?!

Mark-Sweep Collector:

5% - 50%
Improves temporal locality and reduces allocator work

Generational Collector:

Avg: No effect on GC time :-(
BUT: Improves collector time
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Conclusion

Conclusion

Analysis identifies a large fraction of short-lived objects

Analysis is not effective on

large data structures
containers classes
conditional factories

Provides incremental collection of garbage

Works well on MS, but not on a Generational Collector
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