
Free-Me
A Static Analysis for Automatic Individual Object Reclamation

Samuel Z. Guyer, Kathryn S. McKinley, Daniel Frampton

presented by Stephanie Stroka
University of Salzburg

January 13, 2011



Motivation Compiler Analysis Runtime Support Results Conclusion

Outline

1 Motivation
State of the Art
Free-Me Idea

2 Compiler Analysis
Flow-insensitive pointer analysis
Flow-sensitive pointer analysis
Free placement

3 Runtime Support for Free-Me and Methodology
Runtime Support
Lazy Free-List
Bump-Pointer Allocation
Optimization Techniques

4 Results

5 Conclusion

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

State of the Art

Manual Memory Management

Can be more efficient

Dangling pointers

Double free

Reachable and Unreachable memory leaks

Automatic Memory Management

Stop-the-World/Concurrent/Incremental

No dangling pointer bugs

No double free bugs

Reachable memory leaks

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Free-Me idea

Why not just combine them?

Combine benefits of both systems

Discard disadvantages of both systems

Reclaim memory quickly

Reduce programmer effort

Related work

Stack allocation, Escape Analysis

Region Allocation

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Free-Me idea

Goals

Identify points in the program where memory can be discarded

Allow handling of factory methods

Discard memory immediately

Reduce number of GC cycles

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Code example

1 public void parse(InputStream stream) {
2 while(...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName);
5 if(id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 computeOn(id);

10 }
11 }

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Code example

1 public void parse(InputStream stream) {
2 while(...) {
3 String idName = stream.readToken();
4 Identifier id = symbolTable.lookup(idName);
5 if(id == null) {
6 id = new Identifier(idName);
7 symbolTable.add(idName, id);
8 }
9 else {

10 // idName is no longer used

11 free(idName);
12 }
13 computeOn(id);
14 }
15 }

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Compiler Analysis

The two kinds of points-to analysis

Flow-insensitive pointer analysis
⇒ To identify allocation nodes and factory methods

Flow-sensitive liveness analysis
⇒ To inserting calls to free()

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Flow-insensitive pointer analysis

Figure 1: Single Static Assignment (SSA)

Figure 2: Connectivity Graph

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Analyzing assignments

1 Object object = new Object();

2 Field field_1 = new Field();

3 object.field = field_1;

4 Field field_2 = object.field;

object field_1 field_2

new Object

(1) (2)

(3)
(4)

(5)

new Field

Figure 3: Connectivity Graph

Assignment Points-to set

v1 = v2; PtsTo(v1)∪ = PtsTo(v2)

v = Cls.f ; PtsTo(v)∪ = {NG}1
Cls.f = v ; PtsTo(NG )∪ = PtsTo(v)
v1.f = v2; ∀n ∈ PtsTo(v1)

PtsTo(n)∪ = PtsTo(v2)

v1 = v2.f ; PtsTo(v1)∪ = PtsTo ∗ (v2)2

Table 1: Rules for assignments

1
NG : Node for all globals

2
PtsTo∗: Transitive closure of points-to

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Procedure summary

Method summaries aim to...

summarize the intra-method connectivities

keep record of passed parameters in callee-methods
identify ”hot” methods

Methods with allocation calls
Methods with factory calls

Nodes Procedure summary

Npj
1 ∈ PtsTo ∗ (pi ) record entry (pi , pj )

NIj
2 ∈ PtsTo ∗ (pi ) record entry (pi , ∗pj )

Npj ∈ PtsTo ∗ (NG ) record entry (global, pj )
Npj ∈ PtsTo ∗ (return) record entry (return, pj )

PtsTo ∗ (return) ⊂ NA
3 record method is a factory

Table 2: Records for project summary

1
Nodes for targets in parameters

2
Parameter ”inner” nodes

3
Allocation nodes

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Flow-sensitive pointer analysis / liveness analysis

Figure 4: Single Static Assignment (SSA)

Figure 5: Connectivity Graph

Figure 6: Liveness of idName

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Result

Figure 7: Liveness of idName

Result of liveness analysis on idName

→ readToken is reachable from program points {1,2,3,4,5,6,8,9},
BUT not from program point 7

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Free placement

Where to put free()?

Place free() as soon as possible

Avoid excessive calls to free()

Use temporary variables for every object that will be freed

1 // Wrong:

2 object = new Object();

3 object = o.field;

4 free(object);

1 // Correct:

2 object = new Object();

3 tmp0 = object;

4 object = o.field;

5 free(tmp0);

6 tmp0 = null;

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Runtime Support

Implementations of free() for different allocators

Size-segregated free-list implementation

Bump-Pointer implementation

Implementations of free() for different collectors

Mark-Sweep

Reference Counting

Copying Collector

Generational Garbage Collector

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Lazy Free-List

Lazy Free-List

Supports k size-segregated free-list

Incremental re-usage of memory

Less free-list creations, memory tracing and GC cycles

1 k

...size-
segregated 
free-list

2 3 4

free()

heap ...

Figure 8: free() on segregated free-list

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Bump-Pointer Allocation

Bump-Pointer Allocation

Three implementations:

Unbump: Last allocated, first deallocated
Unbump Region: Memorize nearest, reclaimed region and
unbump
Unreserve: Diminish reserved copying memory

Slow memory fill-up, less GC cycles

Smaller reserved region for copy process

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Bump-Pointer Allocation

Figure 9: Unbump (1) Figure 10: Unbump (2)

Figure 11: Unbump Region (1) Figure 12: Unbump Region (2)

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Optimization Techniques

Three steps

Analyze Java standard class libraries during JikesRVM boot

Pre-compute method summaries offline

Pre-compile hot methods

⇒ almost doubles the compile time :-(

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Results

Is Free-Me really saving memory?!

Benchmarks: SPECjvm98, pseudojbb, SPECjbb2000, DaCapo

On average, Free-Me frees 32% of memory

Max: 81% of memory savings

Compared to stack allocation: +7%

Without conditional frees: +11%

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Results

Is Free-Me really saving time?!

Mark-Sweep Collector:

5% - 50%
Improves temporal locality and reduces allocator work

Generational Collector:

Avg: No effect on GC time :-(
BUT: Improves collector time

Stephanie Stroka Free-Me



Motivation Compiler Analysis Runtime Support Results Conclusion

Conclusion

Conclusion

Analysis identifies a large fraction of short-lived objects

Analysis is not effective on

large data structures
containers classes
conditional factories

Provides incremental collection of garbage

Works well on MS, but not on a Generational Collector

Stephanie Stroka Free-Me


	Motivation
	Compiler Analysis
	Runtime Support for Free-Me and Methodology
	Results
	Conclusion

