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MEMORY LEAKS ARE A REAL PROBLEM

FIXING THEM IS HARD
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 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

Live
Dead



 No immediate symptoms (reproduce, fix, find)

 Escape developers detection (tools for leaks 
detection)

 Slow & crash real programs (memory exhausted)

Live
Dead
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 DEVELOPERS

Eliminate bad effects

Don’t 
slow

Don’t 
crash Information

Time

 USERS: ILLUSION FIX

Not a 
replacement



 Predicts that stale objects (not used for a 
while) are likely leaks  disk

 The application try to access an object on 
disk, it activates it main memory



Stale objects
(disks)

In-use objects
(main memory)

Stale objects (likely leaks)

Activate objects
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 Melt  leak  tolerance: 
transfers likely leaked objects to disk

 freeing physical and virtual memory

 much larger than memory delays exhaustion
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 Primary objective: illusion

 Invariants:

 Stale space: separate stale objects from in-use 
ones (disk)

 Accesses to stale space:
▪ Collector moves objects

▪ Application actives objects



 Each collection, objects the program 
has not accessed since the last one, will 
be stale ones

 Collector  marks objects as stale every 
collection



 Each collection, objects the program has 
been accessed, will be unmarked

 Compiler and its instrumentation 
unmarks objects every collection
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Stub (stale space)-scion (in-use space) pairs for each in-
use object referenced by at least one stale object
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At first: we 

just need scions

But: in-use objects

may become stale

later
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1- copy C into in-use space

2- replaces stale C

with a stub

3- allocates a scion

4- links them all together

(retaining references)
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 Implemented in Jikes RVM 2.9.2

 Melt design compatible with any tracing 
collector

 i.e., for the demonstration is used generational 
copying collector
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 Benchmarks 
(to measure overhead):
 DaCapo,  SPECjbb2000,  SPECjvm98

 Platform
(where execution was experimented):
 Dual-core Pentium 4

 Results
 6% overhead on average



 Evaluation: How well tolerates growing leaks
by running them longer and maintaining
program performance?

 10 leaks founded

 5 tolerated

 2 tolerated but with high overhead (activating
many stale objects)

 3 doesn’t significally help



Leak Melt’s effect

Eclipse “Diff” Tolerates until 24-hr limit (1,000X longer)

Eclipse “Copy-Paste” Tolerates until 24-hr limit (194X longer)

JbbMod Tolerates until 20-hr crash (19X longer)

ListLeak Tolerates until disk full (200X longer)

SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)
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SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)

Leaky program: has live
leaks for improving

longevity and performance 
significantly
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 Conclusions comparing reachable memory
for first 1000 iterations: 

 Jikes RVM and Sun JVM fill the heap as the leak
grows

 Melt starts moving stale objects (80% full) and 
keeps memory usage fairly constant between 100 
and 130 MB



Crash quickly

Stay constant



Shows the
time each

iteration takes



 Grow linearly over iterations and have large 
magnitudes



 In-use objects constant over iterations
 Scions grows linearly over time (small)
 Objects activated increase linearly
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 Publishers follow-on work called Leak 
Pruning that reclaims (i.e., deletes) memory 
that seems to be leaked, instead of moving it 
to disk: 

http://www.cse.ohio-
state.edu/~mikebond/papers.html#leak-
pruning

March 2009
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