
Michael Bond
Kathryn McKinley

The University of Texas at Austin

October, 2008

Presented by: Maria Martin
Concurrency and Memory Management Seminar,
winter term 2010
University of Salzburg, Department of Computer
Science

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 (what?) A memory leak:

 (why?) computer program consumes
memory

 (how?) they are unable to release it back to
the operating system

 (result): out of memory

 (what?) A memory leak:

 (why?) computer program consumes
memory

 (how?) is unable to release it back to the
operating system

 (result): out of memory

MEMORY LEAKS ARE A REAL PROBLEM

FIXING THEM IS HARD

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

Live

ReachableDead

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

Live

ReachableDead
Programers

ignore
pointers to
objects the

program will
never use

again

 Managed languages do not eliminate them
▪ Type safety and garbage collection (reliability)

Live
Dead

 No immediate symptoms (reproduce, fix, find)

 Escape developers detection (tools for leaks
detection)

 Slow & crash real programs (memory exhausted)

Live
Dead

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 DEVELOPERS

Eliminate bad effects

Don’t
slow

Don’t
crash Information

Time

 USERS: ILLUSION FIX

Not a
replacement

 Predicts that stale objects (not used for a
while) are likely leaks disk

 The application try to access an object on
disk, it activates it main memory

Stale objects
(disks)

In-use objects
(main memory)

Stale objects (likely leaks)

Activate objects

 Melt leak tolerance:
transfers likely leaked objects to disk

 Melt leak tolerance:
transfers likely leaked objects to disk

 freeing physical and virtual memory

 much larger than memory delays exhaustion

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Primary objective: illusion

 Invariants:

 Stale space: separate stale objects from in-use
ones (disk)

 Accesses to stale space:
▪ Collector moves objects

▪ Application actives objects

 Each collection, objects the program
has not accessed since the last one, will
be stale ones

 Collector marks objects as stale every
collection

 Each collection, objects the program has
been accessed, will be unmarked

 Compiler and its instrumentation
unmarks objects every collection

roots

A

E

B

C

F

D Look for
marked

references,
instead of

marked objects

roots

C,D not accessed
since the last
collection, all their
incoming
references are stale

A

E

F

D

B

C

C,D are stale objects

stale space

roots

A

E

F

D

B

C

in-use space

Heap nearly full
move stale objects to

disk

roots

in-use space stale space

A

E

B

F

C

D

Heap nearly full
move stale objects to

disk

roots

in-use space stale space

A

E

B

F

C

D

Stale to in-use references problematic

roots

in-use space stale space

A

E

B

F

C

D

Stale to in-use references problematic

would violate the

invariants while

updating their

outgoing references

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

Stub (stale space)-scion (in-use space) pairs for each in-
use object referenced by at least one stale object

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

scion
space

B Bscion

scion
table

ensure each

in-use object

has only ONE

stub-scion pair

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

scion
space

B Bscion

scion
table

necessary?

roots

in-use space stale space

A

E

B

F

C

D

BstubBscion

scion
space

B Bscion

scion
table

necessary?

At first: we

just need scions

But: in-use objects

may become stale

later

roots

in-use space stale space

scion
space

B Bscion

scion
table

A

E

F

C

D

BstubBscion

B

copies B into

the stale space

roots

in-use space stale space

scion
table

A

E

F

C

D

Bstub

B

Looks up the stub location

in the scion and points the

stub to stale B. delates scion

roots

in-use space stale space

scion
space

scion
table

A

E

F

C

D

Bstub

B

roots

in-use space stale space

scion
space

scion
table

A

E

F

C

D

Bstub

B

1- copy C into in-use space

2- replaces stale C

with a stub

3- allocates a scion

4- links them all together

(retaining references)

roots

in-use space stale space

scion
space

C Cscion

scion
table

E

F

Cstub

D

A

Bstub

B

C

Cscion

roots

in-use space stale space

scion
space

C Cscion

scion
table

F

Cstub

D

A

Bstub

B

Cscion
E

C

roots

in-use space stale space

scion
space

C Cscion

scion
table

F

Cstub

D

A

Bstub

B

Cscion
E

C

Follows Cstub to Cscion to

C in the in-use space

And update references

INACTIVE
MARK
STALE

MOVE &
MARK
STALE

WAIT

Heap not nearly full

Heap full or
nearly full

80%

Heap full or
nearly full

Start

Expected heap
fullness

Heap not
nearly full

After
marking

Unexpected
heap fullness

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Implemented in Jikes RVM 2.9.2

 Melt design compatible with any tracing
collector

 i.e., for the demonstration is used generational
copying collector

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Benchmarks
(to measure overhead):
 DaCapo, SPECjbb2000, SPECjvm98

 Platform
(where execution was experimented):
 Dual-core Pentium 4

 Results
 6% overhead on average

 Evaluation: How well tolerates growing leaks
by running them longer and maintaining
program performance?

 10 leaks founded

 5 tolerated

 2 tolerated but with high overhead (activating
many stale objects)

 3 doesn’t significally help

Leak Melt’s effect

Eclipse “Diff” Tolerates until 24-hr limit (1,000X longer)

Eclipse “Copy-Paste” Tolerates until 24-hr limit (194X longer)

JbbMod Tolerates until 20-hr crash (19X longer)

ListLeak Tolerates until disk full (200X longer)

SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)

Leak Melt’s effect

Eclipse “Diff” Tolerates until 24-hr limit (1,000X longer)

Eclipse “Copy-Paste” Tolerates until 24-hr limit (194X longer)

JbbMod Tolerates until 20-hr crash (19X longer)

ListLeak Tolerates until disk full (200X longer)

SwapLeak Tolerates until disk full (1,000X longer)

MySQL Some highly stale but in-use (74X longer)

Delaunay Mesh Short-running

DualLeak Heap growth is in-use (2X longer)

SPECjbb2000 Heap growth is mostly in-use (2X longer)

Mckoi Database Thread leak: extra support needed (2X longer)

Leaky program: has live
leaks for improving

longevity and performance
significantly

0

64

128

192

256

0 200 400 600 800 1000

R
e

a
ch

a
b

le
 m

e
m

o
ry

 (
M

B
)

Iteration

 Conclusions comparing reachable memory
for first 1000 iterations:

 Jikes RVM and Sun JVM fill the heap as the leak
grows

 Melt starts moving stale objects (80% full) and
keeps memory usage fairly constant between 100
and 130 MB

Crash quickly

Stay constant

Shows the
time each

iteration takes

 Grow linearly over iterations and have large
magnitudes

 In-use objects constant over iterations
 Scions grows linearly over time (small)
 Objects activated increase linearly

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Finding bugs before deployment is hard

 Melt:

 Finding bugs before deployment is hard

 Melt:

 Requires time & space proportional to in-use
memory

 Preserves safety (activating stale objects on
disk)

 Finding bugs before deployment is hard

 Melt:

 Requires time & space proportional to in-use
memory

 Preserves safety (activating stale objects on
disk)

 Developers time
 Users illusion

 Introduction to the problem (why?)

 Leak tolerance: Melt

 Tolerating memory leaks

 Implementation

 Results

 Conclusion

 Related work

 Publishers follow-on work called Leak
Pruning that reclaims (i.e., deletes) memory
that seems to be leaked, instead of moving it
to disk:

http://www.cse.ohio-
state.edu/~mikebond/papers.html#leak-
pruning

March 2009

http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html
http://www.cse.ohio-state.edu/~mikebond/papers.html

Maria.MartinCiviac@sbg.ac.at

THANK YOU

