

Flat Combining and
the Synchronization-Parallelism Tradeoff

Danny Hendler, Ben-Gurion University
Itai Incze, Tel-Aviv University
Nir Shavit, Tel-Aviv University

Moran Tzafrir, Tel-Aviv University

SPAA '10 Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures

Hannes Payer, University of Salzburg, January 2011

Research Problem

 Performance of concurrent data structures

 Traditionally: provide parallelism via fine
grained synchronization
 It has been shown in several studies that finely

synchronized data structures outperform data
structures protected by a single global lock

 Is the above assumption true in general?

Answer

 No, because of synchronization overhead!

Flat Combining - General Idea

 Ingredients:
 Original data structure
 Global lock
 Publication list and mapping of threads to thread-

local publication records

 A thread performs a data structure operation in
the following way

1) Acquire a global lock

2) Learn about all concurrent access requests

3) Perform the combined requests of all pending
requests

Flat Combining - Details

Flat Combining - Details

1) Write data structure operation and paraments
(if any) to be applied to the shared data
structure in the thread-local publication record

2) Check if global lock is taken
 If so, spin on the publication record waiting for a

response to the invocation.
 Once in a while check if the lock is still taken
 If response is available in the publication record:

reset the thread-local publication record to null and
return response

Flat Combining - Details

3) If global lock is not taken, attempt to acquire it
and become a combiner.
 Otherwise return to 2)

4) Execute scanCombineApply()
 Is specific for different data structures
 Scan over publication list, comine requests, and

return results of the invocations
 Guaranteed to be Wait-free
 Release the global lock

Flat Combining - Details

 Publication list can grow and shrink dynamically
 Multiple ways to do this but they require

synchronization operations

 A static publication list size offers the best
performance

Flat Combining Queue and Stack

 ScanCombineApply()
 Queues and stacks have an inherent sequential

bottleneck that is difficult to overcome
 A temporary list is used to combine pending

requeusts
 A non-empty temporary list is in the end

concatenated with the original data structure

Flat Combining Skiplist

 ScanCombineApply()
 Each node consists of a key and a list
 RemoveSmallestK()

workload is comparable to a single removel
 CombinedAdd()

sort pending requeusts and perform just a single
pass through the list

Flat Combining Correctness

 Linearizability
 Correctness condition of shared data structures
 Each operation takes effect instantaneously at

some (linearization) point between its invocation
and response

 Proof: show that a linearization can be found for
each execution on the data structure

Flat Combining Correctness

 Proof outline:
 The global lock serializes all data structure

operations
 Since there is just a single combiner thread at each

point in time, operations are ordered sequentially
 Threads are blocked unless their data structure

operation is applied

Flat Combining Progress

 Flat combining is starvation free
 ScanCombineApply is wait-free

 Proof outline:
 The data structure operation of a single thread is

performed by a current combiner thread or by a
subsequent combiner thread

Experimental Setup

 128-way Enterprise T5140 server machine
running Solaris

 2-chip Niagara system, each chip has 8 cores
that multiplex 8 hardware threads each and
share an L2 cache

 Hoard memory allocator to reduce system jitter

Performance Evaluation

Performance Evaluation

Performance Evaluation

Why does Flat Combining work?

 Reduces synchronization overhead on shared
data structure

 Reduces the overall cache invalidation traffic on
the data structure

 Locality
 Items are cached
 Take advantage of re-ordering of operations

and applying them at the same point in time

Performance Evaluation

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

