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Introduction

State of the art 1998

Douglas T. Ross 1967; The AED free storage package [2]
⇒ Available space is partitioned into storage zones

Kiem-Phong Vo 1996; Vmalloc: A General and Efficient Memory
Allocator [3]
⇒ Allows different allocation strategies (region- and/or objectbased)

...and a lot of more

What was new?

Safe, region-based memory management

Comparing performance with standard malloc/free implementations
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Introduction

Explicit regions

Region r = newregion();

Region r

ralloc(r, size)

ralloc(r, size) ralloc(r, size)

deleteregion(r);
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Implementation Overview and motivation

Safe regions - implementation overview

Extended C ⇒ C@

Normal *pointers vs. region @pointers

Reference count per region

Deleteregion checks reference count before freeing
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Implementation Overview and motivation

Region pointers

Region 1

Object 1

Object 2

Region 2
Object 3

Object 5

localVar1
localVar2

GLOBAL_VAR

Object 4
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Implementation Overview and motivation

Change region pointers

Region 1

Object 1

Object 2

Region 2
Object 3

Object 5

localVar1
localVar2

GLOBAL_VAR

Object 4
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Implementation Overview and motivation

Change region pointers - Implication

Decrement old regions rc

Increment new regions rc

We need to know the region of a region pointer

⇒ How to provide a regionof function?

⇒ DETAIL 1: Managing regions
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Implementation Overview and motivation

Deleting a region

Region 2
Object 3

Object 5

localVar2

GLOBAL_VAR

Object 4
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Implementation Overview and motivation

Deleting a region - Implication

Region pointers may point to objects inside an other region

Decrement other regions rc

We need all region pointers inside the regions space

⇒ How to find all region pointers?

⇒ DETAIL 2: Region Scan
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Implementation Overview and motivation

Performance of local region pointers

Region 1

Object 1

Object 2

Region 2
Object 3

Object 5

localVar1
localVar2

GLOBAL_VAR

Object 4
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Implementation Overview and motivation

Performance of local region pointers - Implication

Exchanging region pointers as shown in previous figure:

vo id @tmp = l o c a lV a r 1 ; // Region1 . r c++
l o c a lV a r 1 = l o c a lV a r 2 ; // Region2 . r c++ AND Region1 . rc−−
l o c a lV a r 2 = tmp ; // Region1 . r c++ AND Region2 . rc−−
tmp = n u l l ; // Region1 . rc−−

We need regionof operations for identifying the pointer’s region and
increment/decrement the reference counts.

A lot of work is done for nothing

⇒ How to get good performance?

⇒ DETAIL 3: Local variables
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Implementation DETAIL 1: Managing regions

Implementation details

DETAIL 1: Managing regions
motivated by: We need to know the region of a region pointer

DETAIL 2: Region scan
motivated by: We need all region pointers inside the regions space

DETAIL 3: Local variables
motivated by: A lot of work is done for nothing

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 13 / 20



Implementation DETAIL 1: Managing regions

Managing regions by blocks

Allocating blocks (=page)

Page belongs to one region and contains header infos

Region

firstpage
allocfrom

Allocator

ralloc(r, 2048);

Header
(8 Byte)

Region

firstpage
allocfrom

Allocator

Page 3
(6 K free)

Page 2
(1.2 K free)

Page 1
(0.3 K free)

Empty page
(8 K free)

Page 2
(1.2 K free)

Page 1
(0.3 K free)
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Implementation DETAIL 2: Region scan

Implementation details

DETAIL 1: Managing regions
motivated by: We need to know the region of a region pointer

DETAIL 2: Region scan
motivated by: We need all region pointers inside the regions space

DETAIL 3: Local variables
motivated by: A lot of work is done for nothing
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Implementation DETAIL 2: Region scan

Region scan

Objects containing region pointers have to offer a cleanup function.
ralloc(region, size, cleanup) // cleanup is stored in front of object
destroy(@pointer) // decrements region.rc if necessary
cleanup has to return the objects size

Region

firstpage
allocfrom

Allocator

Page 3
(6 K free)

Page 2
(1.2 K free)

Page 1
(0.3 K free)

Page 2
Object1

Object2

...

Page-
header

cleanup
destroy(@p1)
destroy(@p2)

return Object1.size
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Implementation DETAIL 3: Local variables

Implementation details

DETAIL 1: Managing regions
motivated by: We need to know the region of a region pointer

DETAIL 2: Region scan
motivated by: We need all region pointers inside the regions space

DETAIL 3: Local variables
motivated by: A lot of work is done for nothing
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Implementation DETAIL 3: Local variables

Local variables - high water mark

Only deleteregion needs exact rc
High water mark is always above call frame
Deleteregion performs stack-scan and sets high water mark
⇒ Writes to local variables NEVER updates rc

Top of stack

Frame for foo

Frame for bar

Frame for 
deleteregion

 void foo(struct baz @x) {

   ... doSomeStuff ...
1)
   bar(x);
5)
   return;
 }

 void bar(struct baz @x) {

   Region tmp = newregion();
   ... doSomeOtherStuff ...
2)
3) deleteregion(tmp);
4)
   return;
 }

high 
water
mark

1) 2) 5)

3)

4)
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Results

Results

Compared themselfes with 3 different malloc/free implementations

6 allocation-intensive programs (cfrac,gröbner,mudlle,lcc,tile,moss)

Unsave regions are never slower and up to 16% faster

Save regions are from 5% slower to 9% faster

Regions use from 9% less to 19% more memory than Doug Lea
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The End

Thank You!
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