
Memory Management with Explicit Regions [1]
David Gay and Alex Aiken

EECS Department
University of California, Berkeley

presented by:
Alexander Baumgartner

Department of Computer Science
University of Salzburg

January 20, 2011

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 1 / 20

Table of contents

1 Introduction

2 Implementation
Overview and motivation
DETAIL 1: Managing regions
DETAIL 2: Region scan
DETAIL 3: Local variables

3 Results

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 2 / 20

Introduction

State of the art 1998

Douglas T. Ross 1967; The AED free storage package [2]
⇒ Available space is partitioned into storage zones

Kiem-Phong Vo 1996; Vmalloc: A General and Efficient Memory
Allocator [3]
⇒ Allows different allocation strategies (region- and/or objectbased)

...and a lot of more

What was new?

Safe, region-based memory management

Comparing performance with standard malloc/free implementations

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 3 / 20

Introduction

Explicit regions

Region r = newregion();

Region r

ralloc(r, size)

ralloc(r, size) ralloc(r, size)

deleteregion(r);

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 4 / 20

Implementation Overview and motivation

Safe regions - implementation overview

Extended C ⇒ C@

Normal *pointers vs. region @pointers

Reference count per region

Deleteregion checks reference count before freeing

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 5 / 20

Implementation Overview and motivation

Region pointers

Region 1

Object 1

Object 2

Region 2
Object 3

Object 5

localVar1
localVar2

GLOBAL_VAR

Object 4

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 6 / 20

Implementation Overview and motivation

Change region pointers

Region 1

Object 1

Object 2

Region 2
Object 3

Object 5

localVar1
localVar2

GLOBAL_VAR

Object 4

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 7 / 20

Implementation Overview and motivation

Change region pointers - Implication

Decrement old regions rc

Increment new regions rc

We need to know the region of a region pointer

⇒ How to provide a regionof function?

⇒ DETAIL 1: Managing regions

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 8 / 20

Implementation Overview and motivation

Deleting a region

Region 2
Object 3

Object 5

localVar2

GLOBAL_VAR

Object 4

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 9 / 20

Implementation Overview and motivation

Deleting a region - Implication

Region pointers may point to objects inside an other region

Decrement other regions rc

We need all region pointers inside the regions space

⇒ How to find all region pointers?

⇒ DETAIL 2: Region Scan

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 10 / 20

Implementation Overview and motivation

Performance of local region pointers

Region 1

Object 1

Object 2

Region 2
Object 3

Object 5

localVar1
localVar2

GLOBAL_VAR

Object 4

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 11 / 20

Implementation Overview and motivation

Performance of local region pointers - Implication

Exchanging region pointers as shown in previous figure:

vo id @tmp = l o c a lV a r 1 ; // Region1 . r c++
l o c a lV a r 1 = l o c a lV a r 2 ; // Region2 . r c++ AND Region1 . rc−−
l o c a lV a r 2 = tmp ; // Region1 . r c++ AND Region2 . rc−−
tmp = n u l l ; // Region1 . rc−−

We need regionof operations for identifying the pointer’s region and
increment/decrement the reference counts.

A lot of work is done for nothing

⇒ How to get good performance?

⇒ DETAIL 3: Local variables

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 12 / 20

Implementation DETAIL 1: Managing regions

Implementation details

DETAIL 1: Managing regions
motivated by: We need to know the region of a region pointer

DETAIL 2: Region scan
motivated by: We need all region pointers inside the regions space

DETAIL 3: Local variables
motivated by: A lot of work is done for nothing

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 13 / 20

Implementation DETAIL 1: Managing regions

Managing regions by blocks

Allocating blocks (=page)

Page belongs to one region and contains header infos

Region

firstpage
allocfrom

Allocator

ralloc(r, 2048);

Header
(8 Byte)

Region

firstpage
allocfrom

Allocator

Page 3
(6 K free)

Page 2
(1.2 K free)

Page 1
(0.3 K free)

Empty page
(8 K free)

Page 2
(1.2 K free)

Page 1
(0.3 K free)

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 14 / 20

Implementation DETAIL 2: Region scan

Implementation details

DETAIL 1: Managing regions
motivated by: We need to know the region of a region pointer

DETAIL 2: Region scan
motivated by: We need all region pointers inside the regions space

DETAIL 3: Local variables
motivated by: A lot of work is done for nothing

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 15 / 20

Implementation DETAIL 2: Region scan

Region scan

Objects containing region pointers have to offer a cleanup function.
ralloc(region, size, cleanup) // cleanup is stored in front of object
destroy(@pointer) // decrements region.rc if necessary
cleanup has to return the objects size

Region

firstpage
allocfrom

Allocator

Page 3
(6 K free)

Page 2
(1.2 K free)

Page 1
(0.3 K free)

Page 2
Object1

Object2

...

Page-
header

cleanup
destroy(@p1)
destroy(@p2)

return Object1.size

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 16 / 20

Implementation DETAIL 3: Local variables

Implementation details

DETAIL 1: Managing regions
motivated by: We need to know the region of a region pointer

DETAIL 2: Region scan
motivated by: We need all region pointers inside the regions space

DETAIL 3: Local variables
motivated by: A lot of work is done for nothing

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 17 / 20

Implementation DETAIL 3: Local variables

Local variables - high water mark

Only deleteregion needs exact rc
High water mark is always above call frame
Deleteregion performs stack-scan and sets high water mark
⇒ Writes to local variables NEVER updates rc

Top of stack

Frame for foo

Frame for bar

Frame for
deleteregion

 void foo(struct baz @x) {

 ... doSomeStuff ...
1)
 bar(x);
5)
 return;
 }

 void bar(struct baz @x) {

 Region tmp = newregion();
 ... doSomeOtherStuff ...
2)
3) deleteregion(tmp);
4)
 return;
 }

high
water
mark

1) 2) 5)

3)

4)

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 18 / 20

Results

Results

Compared themselfes with 3 different malloc/free implementations

6 allocation-intensive programs (cfrac,gröbner,mudlle,lcc,tile,moss)

Unsave regions are never slower and up to 16% faster

Save regions are from 5% slower to 9% faster

Regions use from 9% less to 19% more memory than Doug Lea

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 19 / 20

The End

Thank You!

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 20 / 20

[1] David Gay and Alex Aiken. Memory management with explicit regions.
PLDI ’98 Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, pages 313–323, .

[2] Douglas T. Ross. The aed free storage package. Communications of
the ACM, 10(8) 1967, pages 481–492.

[3] Kiem-Phong Vo. Vmalloc: A general and efficient memory allocator.
Softwarepractice and Experience, 26(3) 1996, 10(8) 1967, pages
357–374.

[4] David Gay and Alex Aiken. Language support for regions. PLDI ’01
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 70–80, .

Alexander Baumgartner (Uni Salzburg) Memory Management with Explicit Regions January 20, 2011 20 / 20

	Introduction
	Implementation
	Overview and motivation
	DETAIL 1: Managing regions
	DETAIL 2: Region scan
	DETAIL 3: Local variables

	Results
	Conclusion
	References

