
Obstruction-free synchronization: Double-ended queues
as an example [1]

Maurice Herlihy, Victor Luchangco and Mark Moir
ICDCS 2003

presented by: Martin Aigner

Department of Computer Sciences, University of Salzburg

November 25, 2010

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 1 / 33

Introduction

Welcome! Why are we here today?

Why do we need concurrent programs?
It is unlikely that chips will get faster clocks (form factor, heat, energy).
Today the industry focuses on speedup by parallel execution on
multi-processor systems.

n threads on n cpus. Where is the problem?
No problem for independent threads. But:
Similar to interleaved execution on single-cpu systems: Concurrent access
to shared data structures may cause conflicts.

Definition: concurrent system
A concurrent system consists of a collection of n sequential threads
(processes) that communicate through shared objects.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 2 / 33

Issues with concurrency

Example: a bottleneck on shared resources

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Number of threads, number of cores

independent threads threads sharing data

Figure: Speedup degradation on shared data with increasing number of threads

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 3 / 33

Issues with concurrency

The cause of the bottleneck

Concurrent access needs to be managed!
Threads need some sort of synchronization to avoid race conditions.
In 1965, Dijkstra proposed semaphores. It solved the producer-consumer
problem and enabled synchronization by critical sections.

Synchronization creates the bottleneck
Only one thread at a time may modify a memory location. If a second
thread attempts to do the same, the OS preempts the thread and puts it
to blocked state. This creates a massive amount of overhead. (context
switch, scheduler overhead...)

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 4 / 33

Issues with concurrency

Let us summarize the problems with locks

Terminology
A (b)locking thread holds a lock.
A blocked thread waits for a lock to be released.

What’s wrong with using locks?
Locks cause blocking: Some other (blocked) threads have to wait until a

(set of) lock(s) is released.
Deadlocks: The locking thread dies/loops/blocks... ⇒ blocked threads

may wait forever
Priority inversion: Blocked high-priority threads have to wait for a locking

lower-priority thread.
Many more: Scheduler overhead, starvation, livelocks...

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 5 / 33

Issues with concurrency

The problems with locks

The common source of the problems: (simplified)
Blocking threads hinder blocked threads to make progress.

We want (guaranteed) progress!
Intuitively: “No matter how my threads are interleaved, I want my system
to make progress.”

What IS progress?
Progress is a property defined by the developer.
Progress guarantee is a property of a synchronization
technique/algorithm.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 6 / 33

Definitions

blocking vs. non-blocking

Definition: Non-blocking algorithm
A synchronization algorithm is non-blocking if threads do not have their
execution indefinitely postponed by mutual exclusion.

Example
Thread A holds a lock and dies. The other threads will never be able to
enter the critical section.

What to use instead of locks?
The GNU C-library provides non-blocking versions of the mutex lock and
unlock functions. However, literature often refers to low-level operations
such as compare and swap (cas) or load-locked/store-conditional.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 7 / 33

Definitions

non-blocking synchronization primitives 1 2

Listing 1: C implementation for cas on x86
s t a t i c i n l i n e i n t cas (

v o l a t i l e i n t ∗ atomic , i n t o l d v a l , i n t newval)
{

i n t r e s u l t ;

asm v o l a t i l e ("lock; cmpxchgl %2, %1"
: "=a" (r e s u l t) , "=m" (∗ atomic)
: "r" (newva l) , "m" (∗ atomic) , "0" (o l d v a l)
) ;

re tu rn r e s u l t ;
}

1http://www.intel.com/products/processor/manuals/index.htm
2http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 8 / 33

Definitions

Lockfreedom

Definition: Lockfreedom[2]
Some thread is guaranteed to complete an operation after the whole
system took finitely many steps.

In other words
If you schedule enough steps across all threads, one of them will make
progress.

In the sense of fault tolerance
Some thread will always make progress despite arbitrary failures/halting of
other threads.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 9 / 33

Definitions

Waitfreedom

Definition: Waitfreedom [2]
Each thread is guaranteed to complete an operation after the whole
system took finitely many steps.

In other words
If you schedule enough steps of any thread, it will make progress.

In the sense of fault tolerance
All non-halted thread will make progress despite arbitrary failures/halting
of other threads.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 10 / 33

Obstruction-free synchronization

Why do we need a weaker progress guarantee?

Not using locks ; guaranteed progress
Let thread A execute the following C code where *addr represents a shared
object:

do {
o l d v a l = ∗ addr ; // read memory
newval = c a l u l a t i o n (o l d v a l) ; // per fo rm a c t i o n

} whi le (! cas (addr , o l d v a l , newva l)) ; // t r y to s t o r e newva l

Now always preempt A while working on calculation(). Let thread B
change *addr to any value 6= oldval. Thread A will never finish the loop.

How is progress guarantee achieved?
Progress guarantees typically rely on complex (and inefficient) “helping”
mechanisms; the strategy in the case that cas fails.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 11 / 33

Obstruction-free synchronization

Conceptual problems and ideas

Mixing up correctness and progress
Authors opinion: “Ensuring progress should be a problem of engineering,
not of mathematics.”
The resulting complexity creates a barrier to the widespread of
nonblocking synchronization.
A clean separation between correctness and progress promises simpler
(more efficient, more effective) algorithms.

Tradeoff: complexity vs. progress guarantee
Weakening the guarantee of progress leads to less complexity.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 12 / 33

Obstruction-free synchronization

Obstructionfreedom

Definition: Obstructionfreedom
A synchronization technique is obstruction-free if it guarantees progress for
any thread that eventually executes in isolation.

In other words
If you let any thread run alone for enough steps, it will make progress.

In the sense of fault tolerance
Same as with lockfreedom: A thread will always make progress despite
arbitrary failures/halting of other threads.

Where is the catch?
There is no progress guarantee in the presence of contention!

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 13 / 33

Implementation

How to implement obstruction-free algorithms

Problem: make progress in the presence of contention
We need to provide a mechanism to deal with contention, e.g. randomized
exponential backoff, queuing and timestamping approaches...
The threads agree amongst themselves to some sort of order.

Wait a minute... isn’t that the same as using locks?
For simplistic applications: yes! But:
We have much more freedom to design sophisticated contention control
mechanisms without jeopardizing correctness by interrupting an operation
at any time.

The resulting algorithm will look like:
a lightweight synchronization part
a (maybe) heavyweight contention control part

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 14 / 33

Implementation

Assumptions about the system

Case: No contention
In the absence of contention the heavyweight part will rarely be invoked.
In contrast, in lock-free and wait-free implementations the mechanisms
used for progress guarantees are always invoked.

Case: High contention
Obstruction-free, wait-free and lock-free operations may cause similar
overhead.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 15 / 33

Implementation Obstruction-free deque implementation

Deque data representation

Figure: Array invariant: at least one LN followed by zero or more data fields
followed by at least one RN

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 16 / 33

Implementation Obstruction-free deque implementation

Examples for a valid deque

Figure: Array of size MAX+2 can contain MAX data objects. A[0] is always LN
and A[MAX+1] is always RN

Figure: The double ended queue is empty

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 17 / 33

Implementation Obstruction-free deque implementation

The oracle-function

An oracle(side) function to simplify the presentation
oracle(side) takes as a parameter either left or right and returns an array
index. In case of left the function returns the rightmost left-NULL position
and vice versa.

Figure: Semantics of the oracle-function

oracle may be incorrect
One assumption: oracle(left) always returns an index ∈ [0,MAX] and
oracle(right) return an index ∈ [1,MAX+1]

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 18 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpush(n)

Figure: Ask oracle where to insert n

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 19 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpush(n)

Figure: Check if oracle’s answer was correct

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 20 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpush(n)

Figure: Check the boundaries

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 21 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpush(n)

Figure: Perform synchronized push

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 22 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpop()

Figure: Ask oracle where the leftmost RN is

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 23 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpop()

Figure: Check if oracle’s answer was correct

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 24 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpop()

Figure: Check for emptiness

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 25 / 33

Implementation Obstruction-free deque implementation

Deque operations: rightpop()

Figure: Perform synchronized pop

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 26 / 33

Implementation Correctness

Correctness considerations

Basic Idea for correctness:
Version numbering in adjacent locations: We check that the
neighbouring location contains the appropriate value, and we increment its
version number between reading the location to change and
attempting to change it.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 27 / 33

Implementation Correctness

Correctness considerations

Claim 1: rightpush(n)
At the moment that line 7 successfully changes A[k].data from RN to n,
A[k-1].data contains a non-RN value (i.e. either LN or any data value)

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 28 / 33

Implementation Correctness

Correctness considerations

Claim 2: rightpop
At the moment that line 7 successfully changes A[k-1].data from some
value (cur.data) to RN, A[k].data contains RN.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 29 / 33

Implementation Correctness

Correctness considerations

Claim 3: rightpop
If a rightpop returns “empty”, then at the moment it executed line 3,
A[k].data == RN and A[k-1].data == LN held.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 30 / 33

Implementation Correctness

The oracle function

Requirements for linearizability:
oracle returns an index of the appropriate range depending on the
parameter.
oracle(left) always returns an index ∈ [0,MAX] and oracle(right) return an
index ∈ [1,MAX+1]

Requirements for obstructionfreedom:
We require that oracle is eventually accurate if repeatedly invoked in the
absence of interference.

When is oracle accurate?
Oracle will return the right result, if any of the operations executes one
iteration without interference.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 31 / 33

Conclusion

Obstructionfreedom revisited

Definition: Obstructionfreedom
A synchronization technique is obstruction-free if it guarantees progress for
any thread that eventually executes in isolation.

In other words
If you let any thread run alone for enough steps, it will make progress.

Are we convinced this can work?
A single iteration of any deque operation is quite short. It will be efficient
in the absence of heavy contention. In case of heavy contention, one can
experiment with the contention management without modifying the
non-blocking algorithm.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 32 / 33

Conclusion

References

[1] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free
synchronization: Double-ended queues as an example. Distributed
Computing Systems, International Conference on, 0:522, 2003. ISSN
1063-6927.

[2] Maurice Herlihy. A methodology for implementing highly concurrent
data objects. ACM Trans. Program. Lang. Syst., 15:745–770,
November 1993. ISSN 0164-0925.

M. Aigner (University of Salzburg) Obstruction-free synchronization November 25, 2010 33 / 33

	Introduction
	Issues with concurrency
	Definitions
	Obstruction-free synchronization
	Implementation
	Obstruction-free deque implementation
	Correctness

	Conclusion
	References

