
Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Data Representation Synthesis

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard,
Mooly Sagiv

presented by Andreas Schröcker
Concurrency and Memory Management Seminar

Prof. Christoph Kirsch, University of Salzburg
June 14, 2012

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Introduction
Motivation
Example
Approach

Relational Abstraction
Relational Specification
Notation
Relational Operations

Decomoposition and Decomposition Instances

Querying and Updateing Decomposed Relations
Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Autotuner

Experiments

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Motivation
Example
Approach

Datastructures

I Non-trivial program represents its data internally using
dynamically-allocated data structures.

I Commit to a particular choice of heap data structures that
represent the system’s state.

I Must meet several requirements.
I The representation must support all of the operations required

by the code.
I The data structures must be efficient for the workload.
I The implementation must be correct.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Motivation
Example
Approach

Datastructures

I Choice of data structures has a pervasive influence on the
subsequent code.

I As requirements evolve it is difficult and tedious to change the
data structures.

I For a data representation to be correct, data structure
invariants must be enforced by every piece of code that
manipulates the heap.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Motivation
Example
Approach

Operating System Scheduler

I Each process has:
I pid - id of the process
I state - the state of the process (sleeping, running)
I cpu - the cpu time consumed by the process

I Adding support for virtualization:
I ns - processes with the same pid may exist in different

namespaces

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Motivation
Example
Approach

Approach - Data Representation Synthesis

I A data structure client describes and manipulates data at a
high level as relations.

I A data structure designer then provides decompositions which
describe how those relations should be represented in memory
as a combination of primitive data structures.

I Our compiler RelC takes a relation and its decomposition and
emits correct and efficient low-level code that implements the
relational interface.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Motivation
Example
Approach

Data Representation Synthesis

RELC
Synthesis

Relational Specification

x

y z

w

Decomposition

class process_relation {

void insert(...);

bool query(...);

void update(...);

void remove(...);

};

Low-Level
Implementation

ns, pid, state, cpu

ns,pid → state,cpu

ns state

ns,pid

cpu

pid

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Motivation
Example
Approach

Advantages

I Synthesis allows programmers to describe and manipulate
data at a high level as relations, while giving control of how
relations are represented physically in memory.

I By abstracting data from its representation, programmers no
longer prematurely commit to a particular representation of
data.

I Synthesized representations are correct by construction; so
long as the programmer conforms to the relational
specification, invariants on the synthesized data structures are
automatically maintained.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Relational Specification

I A relational specification is a set of column names C and
functional dependencies ∆

I Scheduler Example
I {ns, pid , state, cpu}
I {ns, pid} → {state, cpu}

I We use relations to abstract a program’s data from its
representation.

I Describing particular representations is the task of the
decomposition language

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Values, Tuples, Relations

I tuple t = 〈c1 : v1, c2 : v2, ...〉 maps a set of colums to values.

I dom t = C .

I A relation a is a set of tuples {t1, t2, t3...}.
I t(c) is the value of columns c in tuple t.

I We write t ⊇ s if the tuple t extends s, that is t(c) = t(s) for
all c in dom s.

I We say tuple t maches tuple s, written t ∼ s, if they are equal
on all common columns.

I We say tuple t maches relation r , written t ∼ r , if t matches
every tuple in r.

I We write s 2 t for a merge of tuples. Taking values of t
wherever the two disagree on a columns value,

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Functional Dependencies

I Relation r has functional dependencies (FD) C1 → C2 if any
pair of tuples that are equal on columns C1 are equal on
columns C2.

I We write r |=fd ∆ if a set of FDs ∆ hold on relation r .

I We write ∆ `fd C1 → C2 if FD C1 → C2 is a consequence of
FDs ∆.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Relation for Scheduler Example

rs = { 〈ns : 1, pid : 1, state : S , cpu : 7〉,
〈ns : 1, pid : 2, state : R, cpu : 4〉,
〈ns : 2, pid : 1, state : S , cpu : 5〉 }

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Relational Algebra

We use the standard notation of relational algebra.

I Union ∪
I Set Intersection ∩
I Set Difference \
I Symetric Difference 	
I Projection πC
I Natural Join r1 ./ r2

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Relational Operations

empty () = ref ∅
insert r t = r ←!r ∪ {t}

remove r s = r ←!r \ {t ∈!r |t ⊇ s}
update r s u = r ← { if t ⊇ s then t 2 u else t|t ∈!r}
query r s C = πC{t ∈!r |t ⊇ s}

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Relational Operations

I insert r 〈ns : 7, pid : 42, state : R, cpu : 0〉
I query r 〈ns : 7, pid : 42〉 {state, cpu}
I update r 〈ns : 7, pid : 42〉 〈state : S〉
I remove r 〈ns : 7, pid : 42〉

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Relational Specification
Notation
Relational Operations

Relational Operations

class scheduler_relation

{

void insert(tuple_cpu_ns_pid_state const &r);

void remove(tuple_ns_pid const &pattern);

void update(tuple_ns_pid const &pattern,

tuple_cpu_state const &changes);

void query(tuple_state const &input,

iterator_state__ns_pid &output);

...

};

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Decomposition

I Decompositions describe how to represent relations as a
combination of primitive data structures.

I A decomposition is a static description of the structure of
data, akin to a type.

I Its run-time (dynamic) counterpart is the decomposition
instance, which describes the representation of a particular
relation using the decomposition.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Decomposition

solid line - hash map

x

y z

w
cpu

ns state

pid ns, pid

dotted line - vector
dashed line - dl. list

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Decomposition Instance

x

y1 y2 zS zR

w1
1 w1

2 w2
1

cpu: 7 cpu: 4 cpu: 5

ns

1 2 S

state

R

pid

1 2

pid

1

ns, pid

1, 1 2, 1

ns, pid

1, 2

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Decomposition Language

p̂ ::= C | C ψ7→ υ | p̂1 ./ p̂2 decomposition primitives

d̂ ::= let υ : C1 . C2 = p̂ in d̂ | υ decomposition
ψ ::= dlist | htable | vector ... data structures

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Decomposition Language

p ::= t | {t 7→ υt′ , ...} | p1 ./ p2 instance primitives
d ::= let {υt = p, ...} in d | υ〈〉 data structures

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Decomposition Language

let w : {ns, pid , state} . {cpu} = {cpu} in

let y : {ns} . {pid , cpu} = {pid} htable7−→ w in

let z : {state} . {ns, pid , cpu} = {ns, pid} dlist7−→ w in

let x : ∅ . {ns, pid , cpu, state} =

({ns} htable7−→ y) ./ ({state} vector7−→ z) in x

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Decomposition Language

let { w〈ns:1,pid :1,state:S〉 = 〈cpu : 7〉,
w〈ns:1,pid :2,state:R〉 = 〈cpu : 4〉,
w〈ns:2,pid :1,state:S〉 = 〈cpu : 5〉, } in

let { y〈ns:1〉 = { 〈pid : 1〉 7→ w〈ns:1,pid :1,state:S〉,
〈pid : 2〉 7→ w〈ns:1,pid :2,state:R〉 },

y〈ns:2〉 = { 〈pid : 1〉 7→ w〈ns:2,pid :1,state:S〉 }} in

let { z〈state:S〉 = { 〈ns : 1, pid : 1〉 7→ w〈ns:1,pid :1,state:S〉,
〈ns : 1, pid : 2〉 7→ w〈ns:1,pid :2,state:R〉 },

z〈state:R〉 = { 〈ns : 2, pid : 1〉 7→ w〈ns:2,pid :1,state:S〉 }} in

let { x〈〉 = { 〈ns : 1〉 7→ y〈ns:1〉,
〈ns : 2〉 7→ y〈ns:2〉 } ./

{ 〈state : S〉 7→ z〈state:S〉,
〈state : R〉 7→ z〈state:R〉 }} in x〈〉

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

I Abstraction function
I Computes the relation represented by a given decomposition

instance.

I Well-formedness criteria
I Check that a decomposition instance is a well-formed instance

of a particular decomposition.

I Adequacy conditions
I Which are sufficient conditions for a decomposition to

faithfully represent a relation.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Querying and Updateing Decomposed Relations

Two basic kinds of relational operations:

I Queries

I Mutations

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Queries

Queries are implemented in two stages:

I Query planning
I Attempt to find most efficient execution plan for a query.

I Query execution
I Evaluates a particular query plan over a decomposition

instance.

This approach is well known in the database literature.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Query Planer implementatin in RelC

I Each strategy has a different computational complexity

I The query planner enumerates the alternatives and chooses
the “best” strategy.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Query Plan

Query plan is a tree of query plan operators.
q ::= qunit | qscan(q) | qlookup(q) | qlr(q, lr) | qjoin(q1, q2lr)
lr ::= left | right

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Scheduler Example

I The query
I query r〈ns : 7, pid : 42〉{cpu}

I Possible query plan
I qcpu = qlr(qlookup(qlookup(qunit)), left)

I Perform query qcpu on an instance d
I dexec qcpu d 〈ns : 7, pid : 42〉

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Scheduler Example

I The query
I query r〈ns : 7, state : R〉{cpu}

I Possible query plan
I q1 =

qjoin(qlookup(qscann(qunit)), qlookup(qlookup(qunit)), left)
I q2 = qlr(qlookup(qscan(qunit)), rights)

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Query Validity

Not every query plan is a correct strategy for evaluating a query.
We must check three properties:

I Query produce all of the columns requested as output.

I When performing a lookup all necessary key columns are
available.

I Enough columns are computed on each side of a join.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Insert

Perform insertion over the nodes of a decomposition in topological
order.

x

y1 zS zR

w1
1 w1

2

cpu: 7 cpu: 4

ns

1 S

state

R

pid

1 2

ns, pid

1, 1

ns, pid

1, 2

x

y1 y2 zS zR

w1
1 w1

2 w2
1

cpu: 7 cpu: 4 cpu: 5

ns

1 2 S

state

R

pid

1 2

pid

1

ns, pid

1, 1 2, 1

ns, pid

1, 2

t = 〈ns : 2, pid : 1, state : S , cpu : 5〉

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Remove

Create a cut and remove nodes matching the tuple.

x

y z

w
cpu

ns state

pid ns, pid

x

y z

w
cpu

ns state

pid ns, pid

cut for columns {ns, pid} cut for columns {state}

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Update

I Semantically, updates are removal followed by an insertion

I Updates are performed inplace.

I Only common case is supported - no key columns.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Autotuner

I Attemps to find the best decomposition of a relation.

I Takes as input a benchmark program, that produces as output
a cost value, together with the relation to optimize.

I Constructs all possible decompositions up to a number of
edges.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Experiments

I Micro-benchmarks

I Real World Systems.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Graph Benchmark

Relation {src , dst,weight}, src, dst → weight.
Decompositions up to size 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Decompositions, Ranked by F Benchmark Time

0

1

2

3

4

5

6

7

8

E
la
p
se
d
ti
m
e
(s
)

F
F+B
F+B+D

(1) (5) (9)
x

y

z
weight

src

dst

x

y z

w
weight

src dst

dst src

x

y z

l r
weight weight

src dst

dst src

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Real World Benchmarks

Original Synthesis

System Everything Module Decomposition Module

thttpd 7050 402 42 239
Ipcap 2138 899 55 794
ZTopo 5113 1083 39 1048

0 5 10 15 20 25

Decompositions, Ranked by Time

0

2

4

6

8

10

12

14

E
la
p
se
d
T
im

e
(s
)

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Experiments - Summary

Experiments show that:

I Different choices of decomposition lead to significant changes
in performance

I The best performance is comparable to existing hand-written
implementations

I The resulting code is concise and the soundness of the
compiler guarantees that the resulting data structures are
correct by construction.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis

	Introduction
	Motivation
	Example
	Approach

	Relational Abstraction
	Relational Specification
	Notation
	Relational Operations

	Decomoposition and Decomposition Instances
	Querying and Updateing Decomposed Relations
	Queries and Query Plans
	Mutation: Empty and Insert Operations
	Mutation: Remove and Update Operations

	Autotuner
	Experiments

