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Datastructures

I Non-trivial program represents its data internally using
dynamically-allocated data structures.

I Commit to a particular choice of heap data structures that
represent the system’s state.

I Must meet several requirements.
I The representation must support all of the operations required

by the code.
I The data structures must be efficient for the workload.
I The implementation must be correct.
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Datastructures

I Choice of data structures has a pervasive influence on the
subsequent code.

I As requirements evolve it is difficult and tedious to change the
data structures.

I For a data representation to be correct, data structure
invariants must be enforced by every piece of code that
manipulates the heap.
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Operating System Scheduler

I Each process has:
I pid - id of the process
I state - the state of the process (sleeping, running)
I cpu - the cpu time consumed by the process

I Adding support for virtualization:
I ns - processes with the same pid may exist in different

namespaces
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Approach - Data Representation Synthesis

I A data structure client describes and manipulates data at a
high level as relations.

I A data structure designer then provides decompositions which
describe how those relations should be represented in memory
as a combination of primitive data structures.

I Our compiler RelC takes a relation and its decomposition and
emits correct and efficient low-level code that implements the
relational interface.
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Data Representation Synthesis

RELC
Synthesis

Relational Specification

x

y z

w

Decomposition

class process_relation {

void insert(...);

bool query(...);

void update(...);

void remove(...);

};

Low-Level
Implementation

ns, pid, state, cpu

ns,pid →  state,cpu

ns state

ns,pid

cpu

pid
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Advantages

I Synthesis allows programmers to describe and manipulate
data at a high level as relations, while giving control of how
relations are represented physically in memory.

I By abstracting data from its representation, programmers no
longer prematurely commit to a particular representation of
data.

I Synthesized representations are correct by construction; so
long as the programmer conforms to the relational
specification, invariants on the synthesized data structures are
automatically maintained.
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Relational Specification

I A relational specification is a set of column names C and
functional dependencies ∆

I Scheduler Example
I {ns, pid , state, cpu}
I {ns, pid} → {state, cpu}

I We use relations to abstract a program’s data from its
representation.

I Describing particular representations is the task of the
decomposition language
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Values, Tuples, Relations

I tuple t = 〈c1 : v1, c2 : v2, ...〉 maps a set of colums to values.

I dom t = C .

I A relation a is a set of tuples {t1, t2, t3...}.
I t(c) is the value of columns c in tuple t.

I We write t ⊇ s if the tuple t extends s, that is t(c) = t(s) for
all c in dom s.

I We say tuple t maches tuple s, written t ∼ s, if they are equal
on all common columns.

I We say tuple t maches relation r , written t ∼ r , if t matches
every tuple in r.

I We write s 2 t for a merge of tuples. Taking values of t
wherever the two disagree on a columns value,
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Functional Dependencies

I Relation r has functional dependencies (FD) C1 → C2 if any
pair of tuples that are equal on columns C1 are equal on
columns C2.

I We write r |=fd ∆ if a set of FDs ∆ hold on relation r .

I We write ∆ `fd C1 → C2 if FD C1 → C2 is a consequence of
FDs ∆.
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Relation for Scheduler Example

rs = { 〈ns : 1, pid : 1, state : S , cpu : 7〉,
〈ns : 1, pid : 2, state : R, cpu : 4〉,
〈ns : 2, pid : 1, state : S , cpu : 5〉 }
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Relational Algebra

We use the standard notation of relational algebra.

I Union ∪
I Set Intersection ∩
I Set Difference \
I Symetric Difference 	
I Projection πC
I Natural Join r1 ./ r2
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Relational Operations

empty () = ref ∅
insert r t = r ←!r ∪ {t}

remove r s = r ←!r \ {t ∈!r |t ⊇ s}
update r s u = r ← { if t ⊇ s then t 2 u else t|t ∈!r}
query r s C = πC{t ∈!r |t ⊇ s}
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Relational Operations

I insert r 〈ns : 7, pid : 42, state : R, cpu : 0〉
I query r 〈ns : 7, pid : 42〉 {state, cpu}
I update r 〈ns : 7, pid : 42〉 〈state : S〉
I remove r 〈ns : 7, pid : 42〉
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Relational Operations

class scheduler_relation

{

void insert(tuple_cpu_ns_pid_state const &r);

void remove(tuple_ns_pid const &pattern);

void update(tuple_ns_pid const &pattern,

tuple_cpu_state const &changes);

void query(tuple_state const &input,

iterator_state__ns_pid &output);

...

};
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Decomposition

I Decompositions describe how to represent relations as a
combination of primitive data structures.

I A decomposition is a static description of the structure of
data, akin to a type.

I Its run-time (dynamic) counterpart is the decomposition
instance, which describes the representation of a particular
relation using the decomposition.
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Decomposition

solid line - hash map

x

y z

w
cpu

ns state

pid ns, pid

dotted line - vector
dashed line - dl. list
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Decomposition Instance

x

y1 y2 zS zR

w1
1 w1

2 w2
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ns

1 2 S

state
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pid
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Decomposition Language

p̂ ::= C | C ψ7→ υ | p̂1 ./ p̂2 decomposition primitives

d̂ ::= let υ : C1 . C2 = p̂ in d̂ | υ decomposition
ψ ::= dlist | htable | vector ... data structures
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Decomposition Language

p ::= t | {t 7→ υt′ , ...} | p1 ./ p2 instance primitives
d ::= let {υt = p, ...} in d | υ〈〉 data structures
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Decomposition Language

let w : {ns, pid , state} . {cpu} = {cpu} in

let y : {ns} . {pid , cpu} = {pid} htable7−→ w in

let z : {state} . {ns, pid , cpu} = {ns, pid} dlist7−→ w in

let x : ∅ . {ns, pid , cpu, state} =

({ns} htable7−→ y) ./ ({state} vector7−→ z) in x
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Decomposition Language

let { w〈ns:1,pid :1,state:S〉 = 〈cpu : 7〉,
w〈ns:1,pid :2,state:R〉 = 〈cpu : 4〉,
w〈ns:2,pid :1,state:S〉 = 〈cpu : 5〉, } in

let { y〈ns:1〉 = { 〈pid : 1〉 7→ w〈ns:1,pid :1,state:S〉,
〈pid : 2〉 7→ w〈ns:1,pid :2,state:R〉 },

y〈ns:2〉 = { 〈pid : 1〉 7→ w〈ns:2,pid :1,state:S〉 }} in

let { z〈state:S〉 = { 〈ns : 1, pid : 1〉 7→ w〈ns:1,pid :1,state:S〉,
〈ns : 1, pid : 2〉 7→ w〈ns:1,pid :2,state:R〉 },

z〈state:R〉 = { 〈ns : 2, pid : 1〉 7→ w〈ns:2,pid :1,state:S〉 }} in

let { x〈〉 = { 〈ns : 1〉 7→ y〈ns:1〉,
〈ns : 2〉 7→ y〈ns:2〉 } ./

{ 〈state : S〉 7→ z〈state:S〉,
〈state : R〉 7→ z〈state:R〉 }} in x〈〉
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I Abstraction function
I Computes the relation represented by a given decomposition

instance.

I Well-formedness criteria
I Check that a decomposition instance is a well-formed instance

of a particular decomposition.

I Adequacy conditions
I Which are sufficient conditions for a decomposition to

faithfully represent a relation.
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Querying and Updateing Decomposed Relations

Two basic kinds of relational operations:

I Queries

I Mutations
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Queries

Queries are implemented in two stages:

I Query planning
I Attempt to find most efficient execution plan for a query.

I Query execution
I Evaluates a particular query plan over a decomposition

instance.

This approach is well known in the database literature.
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Query Planer implementatin in RelC

I Each strategy has a different computational complexity

I The query planner enumerates the alternatives and chooses
the “best” strategy.
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Query Plan

Query plan is a tree of query plan operators.
q ::= qunit | qscan(q) | qlookup(q) | qlr(q, lr) | qjoin(q1, q2lr)
lr ::= left | right

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, Mooly SagivData Representation Synthesis



Introduction
Relational Abstraction

Decomoposition and Decomposition Instances
Querying and Updateing Decomposed Relations

Autotuner
Experiments

Queries and Query Plans
Mutation: Empty and Insert Operations
Mutation: Remove and Update Operations

Scheduler Example

I The query
I query r〈ns : 7, pid : 42〉{cpu}

I Possible query plan
I qcpu = qlr(qlookup(qlookup(qunit)), left)

I Perform query qcpu on an instance d
I dexec qcpu d 〈ns : 7, pid : 42〉
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Scheduler Example

I The query
I query r〈ns : 7, state : R〉{cpu}

I Possible query plan
I q1 =

qjoin(qlookup(qscann(qunit)), qlookup(qlookup(qunit)), left)
I q2 = qlr(qlookup(qscan(qunit)), rights)
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Query Validity

Not every query plan is a correct strategy for evaluating a query.
We must check three properties:

I Query produce all of the columns requested as output.

I When performing a lookup all necessary key columns are
available.

I Enough columns are computed on each side of a join.
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Insert

Perform insertion over the nodes of a decomposition in topological
order.

x

y1 zS zR

w1
1 w1

2

cpu: 7 cpu: 4

ns

1 S

state

R

pid

1 2

ns, pid

1, 1

ns, pid

1, 2

x

y1 y2 zS zR

w1
1 w1

2 w2
1

cpu: 7 cpu: 4 cpu: 5

ns

1 2 S

state

R

pid

1 2

pid

1

ns, pid

1, 1 2, 1

ns, pid

1, 2

t = 〈ns : 2, pid : 1, state : S , cpu : 5〉
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Remove

Create a cut and remove nodes matching the tuple.

x

y z

w
cpu

ns state

pid ns, pid

x

y z

w
cpu

ns state

pid ns, pid

cut for columns {ns, pid} cut for columns {state}
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Update

I Semantically, updates are removal followed by an insertion

I Updates are performed inplace.

I Only common case is supported - no key columns.
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Autotuner

I Attemps to find the best decomposition of a relation.

I Takes as input a benchmark program, that produces as output
a cost value, together with the relation to optimize.

I Constructs all possible decompositions up to a number of
edges.
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Experiments

I Micro-benchmarks

I Real World Systems.
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Graph Benchmark

Relation {src , dst,weight}, src, dst → weight.
Decompositions up to size 4.
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Real World Benchmarks

Original Synthesis

System Everything Module Decomposition Module

thttpd 7050 402 42 239
Ipcap 2138 899 55 794
ZTopo 5113 1083 39 1048
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Experiments - Summary

Experiments show that:

I Different choices of decomposition lead to significant changes
in performance

I The best performance is comparable to existing hand-written
implementations

I The resulting code is concise and the soundness of the
compiler guarantees that the resulting data structures are
correct by construction.
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