
Motivation
SpecTM

Evaluation

STM in the Small
Trading Generality for Performance
in Software Transactional Memory

Aleksandar Dragojević1 Tim Harris2

1I&C, EPFL
Lausanne, Switzerland

2Microsoft Research
Cambridge

presented by Thomas Herzog
Concurrency and Memory Management Seminar

Prof. Christoph Kirsch, University of Salzburg

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

1 Motivation
CAS vs STM
Why STM is slow
SpecTM

2 SpecTM
Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

3 Evaluation
Skiplist
Performance

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

CAS vs STM
Why STM is slow
SpecTM

CAS vs STM

CAS
high speed

harder to use

STM
low speed

easier to use

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

CAS vs STM
Why STM is slow
SpecTM

Why STM is slow

Book-keeping required when starting a transaction
Taking a snapshot of processor state

Managing the transaction record on each read and write
Visiting meta-data locations for concurrency control

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

CAS vs STM
Why STM is slow
SpecTM

CAS
high speed

harder to use

STM
low speed

easier to use

SpecTM

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

CAS vs STM
Why STM is slow
SpecTM

SpecTM

Provides a special API
Improved performance
Less generality

Can be mixed with normal transactions
Use normal transactions in the general case
Use SpecTM API in performance-critical sections

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

CAS vs STM
Why STM is slow
SpecTM

Figure 1: Throughput of operations on a hash table (90% lookups)

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Traditional STM

void *Items[QUEUE_SIZE] = { NULL };
int LeftIdx = 0;
int RightIdx = 0;
void *PopLeft(void) {

void *result = NULL;
TX_RECORD t;
do {
Tx_Start(&t);
int li = Tx_Read(&t, &LeftIdx);
void *result = Tx_Read(&t, &Items[li]);
if (result != NULL) {
Tx_Write(&t, &(Items[li]), NULL);
Tx_Write(&t, &LeftIdx, (li+1)%QUEUE_SIZE);

}
} while (!Tx_Commit(&t));
return result;

}

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Specializations

Short transactions
Explicit transactional variables
Combined metadata with value-based validation

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: Basic Idea

Access only a small number of locations
Indicate the sequence of operations
Avoid write-to-read dependencies

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: Code Example

void *Items[QUEUE_SIZE] = { NULL };
int LeftIdx = 0;
int RightIdx = 0;
void *PopLeft(void) {

void *result = NULL;
TX_RECORD t;

restart:
int li = Tx_RW_R1(&t, &LeftIdx);
void *result = Tx_RW_R2(&t, &Items[li]);
if (!Tx_RW_2_Is_Valid(&t)) goto restart;
if (result != NULL) {
Tx_RW_2_Commit(&t, (li+1) % QUEUE_SIZE, NULL);

} else {
Tx_RW_2_Abort(&t);

}
return result;

}

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: Continued

Each access must be to a distinct memory location
Processor state is not saved
Writes are deferred until commit-time

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: API

typedef void *Ptr;

// Single read/write/CAS transactions:
Ptr Tx_Single_Read(Ptr *addr);
void Tx_Single_Write(Ptr *addr, Ptr newVal);
Ptr Tx_Single_CAS(Ptr *addr, Ptr oldVal, Ptr newVal);

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: API

// Read-write short transactions:
Ptr Tx_RW_R1(TX_RECORD *t, Ptr *addr_1);
Ptr Tx_RW_R2(TX_RECORD *t, Ptr *addr_2);
...
bool Tx_RW_1_Is_Valid(TX_RECORD *t);
bool Tx_RW_2_Is_Valid(TX_RECORD *t);
...
void Tx_RW_1_Commit(TX_RECORD *t, Ptr val1);
void Tx_RW_2_Commit(TX_RECORD *t, Ptr val_1, Ptr val_2);
...
void Tx_RW_1_Abort(TX_RECORD *t);
void Tx_RW_2_Abort(TX_RECORD *t);
...

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: API

// Read-only short transactions:
Ptr Tx_RO_R1(TX_RECORD *t, Ptr *addr_1);
Ptr Tx_RO_R2(TX_RECORD *t, Ptr *addr_2);
...
bool Tx_RO_1_Is_Valid(TX_RECORD *t);
bool Tx_RO_2_Is_Valid(TX_RECORD *t);
...

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: API

// Commit combined read-only & read-write transactions:
bool Tx_RO_1_RW_1_Commit(TX_RECORD *t, Ptr val1);
bool Tx_RO_1_RW_2_Commit(TX_RECORD *t, Ptr val_1, Ptr val_2);
...

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: API

// Read-only short transactions:
// Upgrade a location from RO to RW:
bool Tx_Upgrade_RO_1_To_RW_2(TX_RECORD *t);
...

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: RO -> RW Upgrade

bool DCSS(void **a1, void **a2,
void *o1, void *o2,
void *n1) {

TX_RECORD t;
restart:

if (Tx_RO_R1(&t, a1) == o1 &&
Tx_RO_R2(&t, a2) == o2 &&
Tx_Upgrade_RO_1_To_RW_1(&t)) {

if (Tx_RO_2_RW_1_Commit(&t, n1)) return true;
} else if (Tx_RO_2_Is_Valid(&t)) return false;
goto restart;

}

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Short Transactions: Advantages

No need for an update log
Values written are provided at commit-time

Read-after-write checks are no longer necessary
Accessed locations can be held in a fixed-size inline array

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Table of Ownership Records

Figure 2: Meta-data held in a table of ownership records, indexed by
a hash function

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Explicit Transactional Variables

Figure 3: Meta-data co-located with application data in TVars

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Combined Metadata with Value-Based Validation

Figure 4: One lock-bit of meta-data held in each data item

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Value-Based Validation: Caution!

Incorrect for the general case
Special cases:

Read-Modify-Write transactions lock orecs before update
No version numbers needed

Mostly-read-write transactions (one read-only location)
RW locations are locked, RO location’s value is compared

Locations satisfy a "non-re-use" property
The values are taking the place of version numbers

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Skiplist
Performance

Skiplist

Uses short transactions for levels 1 and 2
Uses normal transactions for higher levels

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Skiplist
Performance

Figure 5: Single thread performance of SpecTM

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Skiplist
Performance

Figure 6: 16 cores

Aleksandar Dragojević, Tim Harris STM in the Small

Motivation
SpecTM

Evaluation

Skiplist
Performance

Figure 7: 128 Hardware Threads

Aleksandar Dragojević, Tim Harris STM in the Small

Appendix References

References I

Aleksandar Dragojević, Tim Harris
STM in the Small
Trading Generality for Performance in Software
Transactional Memory
Proceedings of the 7th ACM european conference on
Computer Systems (EuroSys ’12). ACM, New York, NY,
USA, 1–14., 2012.

Aleksandar Dragojević, Tim Harris STM in the Small

	Motivation
	CAS vs STM
	Why STM is slow
	SpecTM

	SpecTM
	Short Transactions
	Explicit Transactional Variables
	Combined Metadata with Value-Based Validation

	Evaluation
	Skiplist
	Performance

	Appendix

