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Aleksandar Dragojević, Tim Harris STM in the Small



Motivation
SpecTM

Evaluation

CAS vs STM
Why STM is slow
SpecTM

Why STM is slow

Book-keeping required when starting a transaction
Taking a snapshot of processor state

Managing the transaction record on each read and write
Visiting meta-data locations for concurrency control
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SpecTM

Provides a special API
Improved performance
Less generality

Can be mixed with normal transactions
Use normal transactions in the general case
Use SpecTM API in performance-critical sections
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Figure 1: Throughput of operations on a hash table (90% lookups)
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Traditional STM

void *Items[QUEUE_SIZE] = { NULL };
int LeftIdx = 0;
int RightIdx = 0;
void *PopLeft(void) {

void *result = NULL;
TX_RECORD t;
do {
Tx_Start(&t);
int li = Tx_Read(&t, &LeftIdx);
void *result = Tx_Read(&t, &Items[li]);
if (result != NULL) {
Tx_Write(&t, &(Items[li]), NULL);
Tx_Write(&t, &LeftIdx, (li+1)%QUEUE_SIZE);

}
} while (!Tx_Commit(&t));
return result;

}
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Specializations

Short transactions
Explicit transactional variables
Combined metadata with value-based validation
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Short Transactions: Basic Idea

Access only a small number of locations
Indicate the sequence of operations
Avoid write-to-read dependencies
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Short Transactions: Code Example

void *Items[QUEUE_SIZE] = { NULL };
int LeftIdx = 0;
int RightIdx = 0;
void *PopLeft(void) {

void *result = NULL;
TX_RECORD t;

restart:
int li = Tx_RW_R1(&t, &LeftIdx);
void *result = Tx_RW_R2(&t, &Items[li]);
if (!Tx_RW_2_Is_Valid(&t)) goto restart;
if (result != NULL) {
Tx_RW_2_Commit(&t, (li+1) % QUEUE_SIZE, NULL);

} else {
Tx_RW_2_Abort(&t);

}
return result;

}
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Short Transactions: Continued

Each access must be to a distinct memory location
Processor state is not saved
Writes are deferred until commit-time
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Short Transactions: API

typedef void *Ptr;

// Single read/write/CAS transactions:
Ptr Tx_Single_Read(Ptr *addr);
void Tx_Single_Write(Ptr *addr, Ptr newVal);
Ptr Tx_Single_CAS(Ptr *addr, Ptr oldVal, Ptr newVal);
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Short Transactions: API

// Read-write short transactions:
Ptr Tx_RW_R1(TX_RECORD *t, Ptr *addr_1);
Ptr Tx_RW_R2(TX_RECORD *t, Ptr *addr_2);
...
bool Tx_RW_1_Is_Valid(TX_RECORD *t);
bool Tx_RW_2_Is_Valid(TX_RECORD *t);
...
void Tx_RW_1_Commit(TX_RECORD *t, Ptr val1);
void Tx_RW_2_Commit(TX_RECORD *t, Ptr val_1, Ptr val_2);
...
void Tx_RW_1_Abort(TX_RECORD *t);
void Tx_RW_2_Abort(TX_RECORD *t);
...
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Short Transactions: API

// Read-only short transactions:
Ptr Tx_RO_R1(TX_RECORD *t, Ptr *addr_1);
Ptr Tx_RO_R2(TX_RECORD *t, Ptr *addr_2);
...
bool Tx_RO_1_Is_Valid(TX_RECORD *t);
bool Tx_RO_2_Is_Valid(TX_RECORD *t);
...
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Short Transactions: API

// Commit combined read-only & read-write transactions:
bool Tx_RO_1_RW_1_Commit(TX_RECORD *t, Ptr val1);
bool Tx_RO_1_RW_2_Commit(TX_RECORD *t, Ptr val_1, Ptr val_2);
...
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Short Transactions: API

// Read-only short transactions:
// Upgrade a location from RO to RW:
bool Tx_Upgrade_RO_1_To_RW_2(TX_RECORD *t);
...
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Short Transactions: RO -> RW Upgrade

bool DCSS(void **a1, void **a2,
void *o1, void *o2,
void *n1) {

TX_RECORD t;
restart:

if (Tx_RO_R1(&t, a1) == o1 &&
Tx_RO_R2(&t, a2) == o2 &&
Tx_Upgrade_RO_1_To_RW_1(&t)) {

if (Tx_RO_2_RW_1_Commit(&t, n1)) return true;
} else if (Tx_RO_2_Is_Valid(&t)) return false;
goto restart;

}
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Short Transactions: Advantages

No need for an update log
Values written are provided at commit-time

Read-after-write checks are no longer necessary
Accessed locations can be held in a fixed-size inline array
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Table of Ownership Records

Figure 2: Meta-data held in a table of ownership records, indexed by
a hash function
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Explicit Transactional Variables

Figure 3: Meta-data co-located with application data in TVars
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Combined Metadata with Value-Based Validation

Figure 4: One lock-bit of meta-data held in each data item

Aleksandar Dragojević, Tim Harris STM in the Small



Motivation
SpecTM

Evaluation

Short Transactions
Explicit Transactional Variables
Combined Metadata with Value-Based Validation

Value-Based Validation: Caution!

Incorrect for the general case
Special cases:

Read-Modify-Write transactions lock orecs before update
No version numbers needed

Mostly-read-write transactions (one read-only location)
RW locations are locked, RO location’s value is compared

Locations satisfy a "non-re-use" property
The values are taking the place of version numbers
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Skiplist

Uses short transactions for levels 1 and 2
Uses normal transactions for higher levels
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Figure 5: Single thread performance of SpecTM
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Figure 6: 16 cores
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Figure 7: 128 Hardware Threads
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