

m a i n () _ { |

_ _ i n t _ i ; |

_ _ i _ = _ 0 ; |

_ _ w h i l e _ (i _ < _ 1 0) _ { |

_ _ _ _ i _ = _ i _ + _ 1 ; |

_ _ } |

_ _ i _ = _ 11; |

}

main() {

 int i;

 i = 0;

 while (i < 10) {

 i = i + 1;

 }

 i = 11;

}

main () { int i ; i = 0 ; while (i < 10) { i = i + 1 ; } i = 11 ; }

main

__int

____i

__=

____i

____0

__while

____<

______i

______10

____=

______i

______+

________i

________1

__=

____i

____11

a scanner recognizes symbols

(sequences of characters) and

returns tokens (integers) that

represent symbols uniquely

24-"main" 8 9 27

 43 24-"i" 17

 24-"i" 21 16-'0' 17

 33 8 24-"i" 18 16-'10' 9 27

 24-"i" 21 24-"i" 11 16-'1' 17

 28

 24-"i" 21 16-'11' 17

28

1. define the set of valid symbols

(identifiers are sequences of letters and digits that

start with a letter; numbers are sequences of digits;

strings are sequences of printable characters in quotes)

2. define the set of keywords

3. define what a comment is

4. define symbol-to-token mapping

5. implement in your language

the scanner maintains a global variable currentCharacter which is
initialized to the first character of the input program by invoking
a library procedure:

readCharacter();

which reads the next character from the input program. the
scanner is invoked by the parser through a procedure:

getSymbol();

which returns the token that represents the next symbol (in
another global variable). for each invocation of getSymbol() the
scanner checks if currentCharacter already constitutes a valid
symbol. if yes, the scanner invokes readCharacter() (to prepare for
the next invocation of getSymbol()) and returns the appropriate
token. if not, the scanner keeps invoking readCharacter() until it
recognizes a valid symbol or returns an error.

