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Verification of Propositions about Algorithms

Hoare Logic: Calculus for proving propositions about algorithms and programs, 
program verification [C.A.R. Hoare, 1969] 

Static propositions over states (valuations of variables), that the algorithm (the 
program) can have at particular locations, e.g.  
... {level < max} level := level +1;... {0 < i ∧ i < 10} a[i] := 42;...;...


The propositions must be provable for all executions of the algorithm. 
Contrary to dynamic testing: The algorithm is executed for given inputs.  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Structural inference rules enable further logical conclusions 
{level+1 ≤ max} level := level + 1; {level ≤ max} 
due to assignment inference rule


Program verification may prove that  
- a proposition about states holds at a particular program location  
- an invariant holds before and after the execution of a program block  
- an algorithm computes the required output for every allowed input  
e.g. {a, b ∈ N} Eucledean Algorithm {x = gcd(a, b)}  
- a loop terminates


An algorithm and the corresponding propositions are constructed together 
 

Verification of Propositions about Algorithms
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Preview of Concepts

Propositions characterise states of an execution


We will write algorithms in pseudo code


Applications of structural inference rules


Loop invariants


Chain inferences of already verified properties


Proofs of loop termination
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Preview Example: Verification of the

Euclidean Algorithm

Precondition: x, y ∈ N, let G be the greatest common divisor (gcd) of  x and y 

Postcondition: a = G 

Algorithm with

      a := x; b:= y;

while a ≠ b do

      if a > b :


            a := a - b;

      else

  

            b := b - a;


{Proposition over variables}:

{INV: G = gcd(a,b) ∧ a>0 ∧ b>0} 

{INV ∧ a ≠ b}

{G = gcd(a,b) ∧ a>0 ∧ b>0 ∧ a>b}     

 ⇒ { G = gcd(a-b,b) ∧ a-b>0 ∧ b>0}


{INV}

{G = gcd(a,b) ∧ a>0 ∧ b>0 ∧ b>a}     

 ⇒ {G = gcd(a,b-a) ∧ a>0 ∧ b-a>0}


{INV ∧ a=b} ⇒ {a = G}


  

          
Termination
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a := x; 

b := y


a := x


falls a > b :

      a := a-b

sonst

      b := b-a


falls a > b :

      a := a-b


gcd()


solange a ≠ b do

      falls a > b : ...

  

          


Notation for instructions
Instruction type 
Sequence


Assignment


Alternative


Conditional statement

  


Subroutine


Loop

Instruction1; 

Instruction2


Variable := Expression


if Condition :

      Instruction1

else

      Instruction2


if Condition :

      Instruction


Sub()


while Condition do

      Instruction

  

          


Notation Example 
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Pre- and Postconditions of Instructions

To verify an algorithm, we need to prove a triple for every instruction A  
{P} A {Q}  
If the proposition P holds before the execution of the instruction A, then Q 
holds after the execution of A, given that A terminates


The propositions can be composed according to the structure of A  
For every type of instruction, one inference rule


A specification provides a pre- and postcondition for the whole algorithm  
{Precondition} Algorithm {Postcondition}  
 

{P} A1 {Q} A2 {R}

postcondition of A1

precondition of A2

precondition of A1 postcondition A2
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Assignment Inference Rule

{P[x/e]} x := e {P}

Substitution - x is 

substituted by e

In order to prove that the proposition P holds for x after the assignment,

one must prove that the same statement P holds for e before the assignment!
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Sequence Inference Rule

If {P} A1 {Q} and {Q} A2 {R} are correct triples, then also

{P} A1;A2 {R} is a correct triple!

{P} A1;A2 {R}

{P} A1 {Q}
{Q} A2 {R}
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Consequence Inference Rules

{P} A {Q}

{P} A {R}
R ⇒ Q

{P} A {Q}

P ⇒ R
{R} A {Q}

Postcondition

weakening

Precondition 

strengthening

Summer 2018 TCS Ana Sokolova 1.3.2018



Alternative Inference Rule

From the common precondition P both branches lead to the same postcondition Q!

{P} If C: A1 else A2 {Q}

{P ∧ C}   A1 {Q}
{P ∧ ¬C} A2 {Q}
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Conditional Inference Rule

From the common precondition P both the instruction and the implication

lead to the same postcondition Q!

{P} If C: A1 {Q}

{P ∧ C}   A1 {Q}
P ∧ ¬C ⇒ Q
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Call Inference Rule

{P} Sub() {Q}

The subroutine Sub has no parameters and produces no output. Its effect on global variables 

is specified with the preconditionon P and the postcondition Q. Then this triple holds!

Due to no parameters and output, the use of this rule is limited.
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Loop Inference Rule

INV is a  loop invariant, i.e., it holds:  
   * before the loop,  
   * before and after any execution of L and  
   * after the loop

{INV} while C do L {INV ∧ ¬C}

{INV ∧ C} L {INV}
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Loop termination

The termination of a loop while C do L  
must be proven separately 
1. Find an integer expression E over the loop variables  
and show that every iteration of L reduces the value of E  
2. Show that E is bounded from below, e.g. that E ≥ 0 is a consequence of the 
loop invariant.  
one may also take another bound (not just 0), E may also increase with every 
loop itertion and be bounded from above!


Nontermination can be proven by showing    
1. that R ∧ C  is a pre- and postcondition of L  
2. that there exists an input for which R ∧ C holds before the loop  
R may characterise a particular state in which the loop does not terminate


There exist loops for which one can not decide if they terminate or not.
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Exercise on Invariants

There are b black and w white balls in a pot and b + w > 0  
(b ≥ 0, w ≥ 0)  
       while there are at least 2 balls in the pot  
                 take two arbitrary balls out of the pot  
                 if they have the same color:  
                       throw both away  
                       add a new black ball to the pot  
                 else  
                       return the white ball to the pot and  
                       throw the black ball away


What is the color of the last ball that remains in the pot?


Find invariants that answer this question!  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