
Theoretical Computer
Science

Week1: Hoare Logic for Verification of Properties
of Algorithms

1.3.2018

Ana Sokolova

Some of the material for this lecture is taken from slides from Prof. Dr. Uwe Kastens (2007)

Verification of Propositions about Algorithms

Hoare Logic: Calculus for proving propositions about algorithms and programs,
program verification [C.A.R. Hoare, 1969]

Static propositions over states (valuations of variables), that the algorithm (the
program) can have at particular locations, e.g.  
... {level < max} level := level +1;... {0 < i ∧ i < 10} a[i] := 42;...;...

The propositions must be provable for all executions of the algorithm.
Contrary to dynamic testing: The algorithm is executed for given inputs.  
 

Summer 2018 TCS Ana Sokolova 1.3.2018

Structural inference rules enable further logical conclusions 
{level+1 ≤ max} level := level + 1; {level ≤ max} 
due to assignment inference rule

Program verification may prove that  
- a proposition about states holds at a particular program location  
- an invariant holds before and after the execution of a program block  
- an algorithm computes the required output for every allowed input  
e.g. {a, b ∈ N} Eucledean Algorithm {x = gcd(a, b)}  
- a loop terminates

An algorithm and the corresponding propositions are constructed together 
 

Verification of Propositions about Algorithms

Summer 2018 TCS Ana Sokolova 1.3.2018

Preview of Concepts

Propositions characterise states of an execution

We will write algorithms in pseudo code

Applications of structural inference rules

Loop invariants

Chain inferences of already verified properties

Proofs of loop termination

Summer 2018 TCS Ana Sokolova 1.3.2018

Preview Example: Verification of the

Euclidean Algorithm

Precondition: x, y ∈ N, let G be the greatest common divisor (gcd) of x and y

Postcondition: a = G

Algorithm with

 a := x; b:= y;

while a ≠ b do

 if a > b :

 a := a - b;

 else

 b := b - a;

{Proposition over variables}:

{INV: G = gcd(a,b) ∧ a>0 ∧ b>0}

{INV ∧ a ≠ b}

{G = gcd(a,b) ∧ a>0 ∧ b>0 ∧ a>b}

 ⇒ { G = gcd(a-b,b) ∧ a-b>0 ∧ b>0}

{INV}

{G = gcd(a,b) ∧ a>0 ∧ b>0 ∧ b>a}

 ⇒ {G = gcd(a,b-a) ∧ a>0 ∧ b-a>0}

{INV ∧ a=b} ⇒ {a = G}

Termination

Summer 2018 TCS Ana Sokolova 1.3.2018

a := x;

b := y

a := x

falls a > b :

 a := a-b

sonst

 b := b-a

falls a > b :

 a := a-b

gcd()

solange a ≠ b do

 falls a > b : ...

Notation for instructions
Instruction type
Sequence

Assignment

Alternative

Conditional statement

Subroutine

Loop

Instruction1;

Instruction2

Variable := Expression

if Condition :

 Instruction1

else

 Instruction2

if Condition :

 Instruction

Sub()

while Condition do

 Instruction

Notation Example

Summer 2018 TCS Ana Sokolova 1.3.2018

Pre- and Postconditions of Instructions

To verify an algorithm, we need to prove a triple for every instruction A  
{P} A {Q}  
If the proposition P holds before the execution of the instruction A, then Q
holds after the execution of A, given that A terminates

The propositions can be composed according to the structure of A  
For every type of instruction, one inference rule

A specification provides a pre- and postcondition for the whole algorithm  
{Precondition} Algorithm {Postcondition}  
 

{P} A1 {Q} A2 {R}

postcondition of A1

precondition of A2

precondition of A1 postcondition A2

Summer 2018 TCS Ana Sokolova 1.3.2018

Assignment Inference Rule

{P[x/e]} x := e {P}

Substitution - x is

substituted by e

In order to prove that the proposition P holds for x after the assignment,

one must prove that the same statement P holds for e before the assignment!

Summer 2018 TCS Ana Sokolova 1.3.2018

Sequence Inference Rule

If {P} A1 {Q} and {Q} A2 {R} are correct triples, then also

{P} A1;A2 {R} is a correct triple!

{P} A1;A2 {R}

{P} A1 {Q}
{Q} A2 {R}

Summer 2018 TCS Ana Sokolova 1.3.2018

Consequence Inference Rules

{P} A {Q}

{P} A {R}
R ⇒ Q

{P} A {Q}

P ⇒ R
{R} A {Q}

Postcondition

weakening

Precondition

strengthening

Summer 2018 TCS Ana Sokolova 1.3.2018

Alternative Inference Rule

From the common precondition P both branches lead to the same postcondition Q!

{P} If C: A1 else A2 {Q}

{P ∧ C} A1 {Q}
{P ∧ ¬C} A2 {Q}

Summer 2018 TCS Ana Sokolova 1.3.2018

Conditional Inference Rule

From the common precondition P both the instruction and the implication

lead to the same postcondition Q!

{P} If C: A1 {Q}

{P ∧ C} A1 {Q}
P ∧ ¬C ⇒ Q

Summer 2018 TCS Ana Sokolova 1.3.2018

Call Inference Rule

{P} Sub() {Q}

The subroutine Sub has no parameters and produces no output. Its effect on global variables

is specified with the preconditionon P and the postcondition Q. Then this triple holds!

Due to no parameters and output, the use of this rule is limited.

Summer 2018 TCS Ana Sokolova 1.3.2018

Loop Inference Rule

INV is a loop invariant, i.e., it holds:  
 * before the loop,  
 * before and after any execution of L and  
 * after the loop

{INV} while C do L {INV ∧ ¬C}

{INV ∧ C} L {INV}

Summer 2018 TCS Ana Sokolova 1.3.2018

Loop termination

The termination of a loop while C do L  
must be proven separately 
1. Find an integer expression E over the loop variables  
and show that every iteration of L reduces the value of E  
2. Show that E is bounded from below, e.g. that E ≥ 0 is a consequence of the
loop invariant.  
one may also take another bound (not just 0), E may also increase with every
loop itertion and be bounded from above!

Nontermination can be proven by showing  
1. that R ∧ C is a pre- and postcondition of L  
2. that there exists an input for which R ∧ C holds before the loop  
R may characterise a particular state in which the loop does not terminate

There exist loops for which one can not decide if they terminate or not.

Summer 2018 TCS Ana Sokolova 1.3.2018

Exercise on Invariants

There are b black and w white balls in a pot and b + w > 0  
(b ≥ 0, w ≥ 0)  
 while there are at least 2 balls in the pot  
 take two arbitrary balls out of the pot  
 if they have the same color:  
 throw both away  
 add a new black ball to the pot  
 else  
 return the white ball to the pot and  
 throw the black ball away

What is the color of the last ball that remains in the pot?

Find invariants that answer this question!  

Summer 2018 TCS Ana Sokolova 1.3.2018

