Formale Systeme Proseminar

Tasks for Week 6: 12.11.20

The first task remained from last time.

- Task 1 (5 from last week) Check with a calculation whether the following abstract propositions are equivalent:
 - (a) $((a \Rightarrow b) \Rightarrow \neg a)$ and $(\neg b \lor \neg a) \land (\neg b \lor b)$ (b) $a \wedge b$ and $(\neg a \lor b) \Leftrightarrow a$

Task 2 Show with calculations that for arbitrary sets A and B, we have

$$A \cup (A^c \cap B) = A \cup B.$$

Task 3 Prove with a calculation that the following propositions are equivalent:

(a) $x \in A \cup (A \cap B)$ and $x \in A \cup (B \cap B^c)$ (b) $x \in A \cap (B \cup A^c)^c$ and $x \in B^c \cap A \cap (A \cup A^c)$.

Task 4 Check for every pair of propositions given below whether they are comparable (one is stronger than the other), or whether they are incomparable.

(a) $P \lor Q$ and $P \land Q$

(b)
$$P$$
 and $\neg (P \lor Q)$

(c) P and $\neg(P \Rightarrow Q)$

Task 5 Are the following statements valid? Why?

- (a) If $P \models Q$ and $Q \models R$ and $R \models S$, then $P \models S$. (b) If $P \models^{val} Q$ and $P \models^{val} R$, then $Q \stackrel{val}{=} R$. (c) If $P \stackrel{val}{\models} Q$ and $P \stackrel{val}{\models} R$, then Q and R are incomparable.

Task 6 Show with a calculation:

(a)
$$P \Rightarrow Q \stackrel{val}{\models} (P \land R) \Rightarrow (Q \land R)$$

(b) $\neg (P \Rightarrow \neg Q)) \stackrel{val}{\models} (P \lor R) \land Q$