Formale Systeme Proseminar

Tasks for Week 6: 7.11.19

The first two tasks remained from last time.

- Task 1 Show the following equivalences by calculating with propositions. Always state precisely: (1) which standard equivalence(s) you use, (2) whether you apply Substitution or Leibnitz, or both, and (3) how you do this.
 - (a) $P \lor (P \land Q) \stackrel{val}{=} P$

(b)
$$P \wedge (P \lor Q) \stackrel{val}{=} P$$

- (c) $P \Rightarrow \neg Q \stackrel{val}{=} \neg (P \land Q)$
- Task 2 Show with a calculation that the following formulas are tautologies

(a)
$$\neg (P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$$

(b) $P \lor \neg ((P \Rightarrow Q) \Rightarrow P)$

- **Task 3** Show with calculations that for arbitrary sets A and B, we have $A \subseteq B$ if and only if $B^c \subseteq A^c$.
- Task 4 Check with a calculation whether the following abstract propositions are equivalent:
 - (a) $((a \Rightarrow b) \Rightarrow \neg a)$ and $(\neg b \lor \neg a) \land (\neg b \lor b)$
 - (b) $a \wedge b$ and $(\neg a \lor b) \Leftrightarrow a$

 ${\bf Task} \ {\bf 5} \ {\bf Prove with \ a \ calculation \ that}$

- (a) $(A^c)^c = A$ for any set A
- (b) $A \cup (A \cap B) = A$ for any two sets A and B.
- **Task 6** Check for every pair of propositions given below whether they are comparable (one is stronger than the other), or whether they are incomparable.
 - (a) $P \lor Q$ and $P \land Q$
 - (b) P and $\neg(P \lor Q)$
 - (c) P and $\neg(P \Rightarrow Q)$

Task 7 Are the following statements valid? Why?

- (a) If $P \stackrel{val}{\models} Q$ and $Q \stackrel{val}{\models} R$ and $R \stackrel{val}{\models} S$, then $P \stackrel{val}{\models} S$. (a) If $P \models Q$ and $Q \models R$ and $R \models S$, then $P \models S$. (b) If $P \models Q$ and $P \models R$, then $Q \stackrel{val}{=} R$. (c) If $P \models Q$ and $P \models R$, then Q and R are incomparable.