Formale Systeme Proseminar

Tasks for Week 10, 5.12.2019

Task 1 Show with derivations that the following formula is a tautology

$$
\exists_{x} \forall_{y}[P(x) \Rightarrow Q(y)] \Rightarrow\left(\forall_{u}[P(u)] \Rightarrow \exists_{v}[Q(v)]\right)
$$

Task 2 Prove with a derivation that the following formula is a tautology.

$$
\exists_{y}\left[\forall_{x}[P(x) \wedge Q(x, y)]\right] \Rightarrow \forall_{z}[P(z)]
$$

Task 3 Prove with a derivation that the following formula is a tautology.

$$
\forall_{y}\left[Q(y) \Rightarrow\left(P(y) \Rightarrow \exists_{x}[P(x) \wedge Q(x)]\right)\right]
$$

Task 4 Prove with a derivation that the following formula is a tautology.

$$
\forall_{x}[P(x): Q(x)] \Rightarrow\left(\exists_{x}[P(x)] \Rightarrow \exists_{x}[Q(x)]\right)
$$

Also prove it with a calculation.
Task 5 Prove with a derivation that the following formula is a tautology.

$$
\exists_{x}\left[\forall_{y}[P(x, y)]\right] \Rightarrow \forall_{v}\left[\exists_{u}[P(u, v)]\right]
$$

Task 6 Let $M=\{a, b, c\}$. Give $M \times M$. Define (if possible) a relation R on M that is reflexive and symmetric, but not transitive.

Task 7 Let $M=\{a, b, c\}$. Define (if possible) a relation R on M that is reflexive and transitive, but not symmetric.

Task 8 Let $M=\{a, b, c\}$. Define (if possible) a relation R on M that is symmetric and transitive, but not reflexive.

