Formale Systeme Proseminar

Tasks for Week 9, 3.12.2015

- **Task 1** Let $M = \{a, b, c\}$. Give $M \times M$. Define (if possible) a relation R on M that is reflexive and symmetric, but not transitive.
- **Task 2** Let $M = \{a, b, c\}$. Define (if possible) a relation R on M that is reflexive and transitive, but not symmetric.
- **Task 3** Let $M = \{a, b, c\}$. Define (if possible) a relation R on M that is symmetric and transitive, but not reflexive.
- Task 4 Check if the following relation is reflexive, symmetric, and/or transitive:

$$R_1 = \{ (x, y) \mid x, y \in \mathbb{R}, x = 0 \land y \ge 0 \}.$$

- **Task 5** Prove that for any set X, the diagonal relation $\Delta_X = \{(x, x) \mid x \in X\}$ is reflexive, symmetric, and transitive.
- **Task 6** For each of the following relations on \mathbb{N} find out if it is a partial order, a strict order, a preorder, a total order, or an equivalence:
 - (a) xRy if and only if |x y| is a multiple of 3.
 - (b) xRy if and only if x < 10 and y is even.

Task 7 Let X be a set. Prove that the relation R on $\mathcal{P}(X)$ defined by

 $(A, B) \in R$ if and only if $A \subseteq B$

is a partial order. When is it a total order?

Task 8 Let X be a set. Consider the relation R on $\mathcal{P}(X)$ defined by

$$(A, B) \in R$$
 iff $A \cap B = \emptyset$.

Check if R is a partial order and/or an equivalence.

Task 9 Is it possible that a relation R is both

- (a) symmetric and asymmetric?
- (b) symmetric and antisymmetric?