# Formale Systeme Proseminar 

Tasks for Week 14, 21.1.2016

Task 1 Prove that for any set $X,|\mathcal{P}(X)|=2^{|X|}$, i.e., provide a bijection from $\mathcal{P}(X)$ to the set $\{0,1\}^{X}$ of all functions from $X$ to $\{0,1\}$.

Task 2 Prove that $\aleph_{0} \cdot 2=\aleph_{0}$, i.e., prove that $\mathbb{N} \times\{0,1\}$ is a countable set (a set with cardinality equal to the cardinality of $\mathbb{N}$ ).

Task 3 Construct a DFA for the language

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { begins with a } 1 \text { and ends with a } 0\right\} .
$$

Task 4 Construct a DFA for the language

$$
L=\left\{w \in\{a, b\}^{*} \mid \text { every } a \text { in } w \text { is preceeded and followed by a } b\right\} .
$$

Task 5 Construct a DFA for the language
$L=\left\{w \in\{0,1,2,3,4,5,6,7,8,9\}^{*} \mid w\right.$ as a natural number is divisible by 3$\}$.
Hint: A natural number is divisible by 3 iff the sum of its digits is divisible by 3 .

Task 6 Construct a DFA for the language

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { ends with } 11 \text { or with } 101\right\}
$$

Task 7 Let $L$ be the language of all strings over $\{0,1\}$ that do not contain a pair of 1's that are separated by an odd number of symbols. Give the state diagram of a DFA with 5 states that recognizes $L$.

