Formale Systeme Proseminar

Tasks for Week 12, 7.1.2016

- **Task 1** Show that the function $f: \mathbb{N} \to \mathbb{N}$ given by f(n) = n+3 is an injection.
- **Task 2** Show that the function $f: \mathbb{Z} \to \mathbb{N}$ given by

$$f(k) = |k| = \begin{cases} k & \text{if } k \ge 0\\ -k & \text{if } k < 0 \end{cases}$$

is a surjection.

- **Task 3** Let X be any set. Show that the identity function $id_X: X \to X$ defined by $id_X(x) = x$ is a bijection.
- **Task 4** Let $f: A \to B$ and $g: B \to C$ be two injective functions. Prove that then $g \circ f$ is injective as well. (Hence, you need to prove Lemma I4 from the lectures.)
- **Task 5** Prove that $f: A \to B$ is surjective if and only if it is right-cancelative: given any two functions $g: B \to C$ and $h: B \to C$ if $g \circ f = h \circ f$, then g = h.
- **Task 6** Prove by induction that

$$\forall n \in \mathbb{N} \setminus \{0, 1\}.(1 + 3 + \ldots + (2n - 1) = n^2).$$

Task 7 The sequence $(a_i \mid i \in \mathbb{N})$ is inductively defined by

$$a_0 = 0$$

$$a_{i+1} = a_i + 3$$

Prove (by induction) that $\forall n \in \mathbb{N}.3 | a_n$. Try to find a closed formula for a_n and prove by induction that it is really true.

Task 8 The sequence $(a_i \mid i \in \mathbb{N})$ is inductively defined by

$$a_0 = 1$$

$$a_{i+1} = \frac{1}{i+1} \sum_{k=0}^{i} a_k$$

 $a_{i+1} = \frac{1}{i+1} \sum_{k=0}^{i} a_k$ Prove (by induction) that $\forall n \in \mathbb{N}. a_n = 1$.

Task 9 The sequence $(a_i \mid i \in \mathbb{N})$ is inductively defined by

$$a_0 = 2$$

$$a_{i+1} = 2a_i - 1$$

Prove (by induction) that $\forall n \in \mathbb{N}. a_n = 2^n + 1$.