Formale Systeme Proseminar

Tasks for Week 7

Task 1 Show that the function $f: \mathbb{N} \to \mathbb{N}$ given by f(n) = n+3 is an injection. **Task 2** Show that the function $f: \mathbb{Z} \to \mathbb{N}$ given by

$$f(k) = |k| = \begin{cases} k & \text{if } k \ge 0\\ -k & \text{if } k < 0 \end{cases}$$

is a surjection.

- **Task 3** Let X be any set. Show that the identity function $id_X: X \to X$ defined by $id_X(x) = x$ is a bijection.
- **Task 4** Prove Proposition S3 from the lectures, that is, show that if $f: A \to B$ is a surjective function and $B' \subseteq B$ then $f(f^{-1}(B')) = B'$.
- **Task 5** Let $f: A \to B$ and $g: B \to C$ be two injective functions. Prove that then $g \circ f$ is injective as well. (Hence, you need to prove Lemma I4 from the lectures.)
- **Task 6** Let X and Y be finite sets with |X| = |Y|. Prove that every injective function $f: X \to Y$ must also be surjective (and hence bijective).
- **Task 7** Let R be an equivalence relation on a set X. Show that the assignment $c(x) = [x]_R$ defines a surjective function $c: X \to X/R$.
- **Task 8** Prove that $f: A \to B$ is surjective if and only if it is right-cancelative: given any two functions $g: B \to C$ and $h: B \to C$ if $g \circ f = h \circ f$, then g = h.
- **Task 9** Prove that $f: A \to B$ is injective if and only if it has a left inverse: there exists a function $g: B \to A$ with the property that $g \circ f = id_A$.