Formale Systeme Proseminar

Tasks for Week 13

Task 1 Show with derivations that the following formula is a tautology

 $\exists_x \forall_y [P(x) \Rightarrow Q(y)] \Rightarrow (\forall_u [P(u)] \Rightarrow \exists_v [Q(v)])$

Task 2 Prove with a derivation that the following formula is a tautology.

 $\exists_y [\forall_x [P(x) \land Q(x, y)]] \Rightarrow \forall_z [P(z)]$

Task 3 Prove with a derivation that the following formula is a tautology.

$$\exists_x [\forall_y [P(x,y)]] \Rightarrow \forall_v [\exists_u [P(u,v)]]$$

- **Task 4** Show that there is unique (up to isomorphism) group on a two-element set $\{0, 1\}$.
- **Task 5** Find all rings (up to isomorphism) on a two-element set $\{0, 1\}$.
- **Task 6** Prove that \equiv_n , defined as usual by $k \equiv_n m$ iff n|(m-k), is a congruence on the ring of integers $\mathbb{Z}(+, \cdot)$.
- **Task 7** Prove that the quotient algebra $\mathbb{Z}_n(+_n, \cdot_n)$ is a ring using the isomorphism theorem.

Task 8 Give an example of a groupoid on the set $\{0, 1, 2\}$ that is:

- (a) commutative,
- (b) with a unit 2,
- (c) cancellative.