Formale Systeme Proseminar

Tasks for Week 8

Task 1 Prove that:

- (a) $P \Rightarrow Q$ is not equivalent to $Q \Rightarrow P$
- (b) $P \Rightarrow Q$ is not equivalent to $\neg P \Rightarrow \neg Q$
- (c) $P \Leftrightarrow Q \Leftrightarrow R$ is not equivalent to $(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)$

Remember this!

 ${\bf Task} \ {\bf 2} \ {\rm In} \ {\rm a} \ {\rm mathematics} \ {\rm book} \ {\rm we} \ {\rm read}$

$$y = x^2 + 2x + 2 \Rightarrow y = (x+1)^2 + 1 \Rightarrow y \ge 1.$$

What is meant here? Are the arrows, implication arrows?

Task 3 Show that Contraposition also holds for \Leftrightarrow , that is:

$$P \Leftrightarrow Q \stackrel{val}{=} \neg Q \Leftrightarrow \neg P.$$

- Task 4 Show the following equivalences by calculating with propositions. Always state precisely: (1) which standard equivalence(s) you use, (2) whether you apply Substitution or Leibnitz, or both, and (3) how you do this.
 - (a) $P \Rightarrow Q \stackrel{val}{=} (P \land Q) \Leftrightarrow P$
 - (b) $P \wedge (P \lor Q) \stackrel{val}{=} P$
 - (c) $P \lor (P \land Q) \stackrel{val}{=} P$
 - (d) $P \wedge (P \Rightarrow Q) \stackrel{val}{=} P \wedge Q$
 - (e) $P \lor (\neg P \land Q) \stackrel{val}{=} P \lor Q$

Task 5 Show with a calculation that the following formulas are tautologies

(a) $\neg (P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$ (b) $P \lor \neg ((P \Rightarrow Q) \Rightarrow P)$

Task 6 Show with calculations that $0 < x^2 - 2x + 1 < 9$ is equivalent to

$$x \neq 1 \land -2 < x < 4.$$

- Task 7 Check for every pair of propositions given below whether they are comparable (one is stronger than the other), or whether they are incomparable.
 - (a) $P \lor Q$ and $P \land Q$
 - (b) P and $\neg(P \lor Q)$
 - (c) P and $\neg(P \Rightarrow Q)$

Task 8 Are the following statements valid? Why?

- (a) If $P \stackrel{val}{\models} Q$ and $Q \stackrel{val}{\models} R$ and $R \stackrel{val}{\models} S$, then $P \stackrel{val}{\models} S$.
- (b) If $P \stackrel{val}{\models} Q$ and $P \stackrel{val}{\models} R$, then $Q \stackrel{val}{=} R$.
- (c) If $P \stackrel{val}{\models} Q$ and $P \stackrel{val}{\models} R$, then Q and R are incomparable.

 ${\bf Task} \ 9 \ {\rm Show} \ {\rm with} \ {\rm a} \ {\rm calculation:}$

(a)
$$P \Rightarrow Q \stackrel{val}{\models} (P \land R) \Rightarrow (Q \land R)$$

(b) $\neg (P \Rightarrow \neg Q)) \stackrel{val}{\models} (P \lor R) \land Q$