Formale Systeme Proseminar

Tasks for Week 6

- **Task 1** Which of the following relations between $A = \{a, b, c\}$ and $B = \{1, 2\}$ define functions from A to B?
 - (a) $R_1 = \{(a, 1), (b, 2)\}.$
 - (b) $R_2 = \{(a, 1), (b, 1), (b, 2), (c, 1)\}.$
 - (c) $R_3 = \{(a,1), (b,2), (a,2)\}.$
 - (d) $R_4 = \{(a,1), (b,2), (c,1)\}.$

Why?

Task 2 Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Let $f: A \to B$ be given by

$$f(a) = 1, f(b) = 2, f(c) = 1.$$

- (a) Write down the set f(A') for $A' = \{a, c\}$.
- (b) Write down the set $f^{-1}(B')$ for $B' = \{2\}$.
- (c) Is f injective, surjective, or bijective?
- (d) Let $g: B \to B$ be given by g(1) = g(2) = 2. Write down the function $g \circ f$.
- **Task 3** Let $f: \mathbb{Z} \to \mathbb{Z}$ be given by f(k) = 12 k. Show that f is a bijection. Find the inverse function $f^{-1}: \mathbb{Z} \to \mathbb{Z}$ of f.
- **Task 4** Let $X = \{1, 2, 3, 4, 5\}$ and consider the function $c: \mathcal{P}(X) \setminus \{\emptyset\} \to X$ defined by c(Y) = |Y| for any $Y \subseteq X$, $Y \neq \emptyset$. Show that c is a surjective function, but c is not injective.
- **Task 5** Let $A = \{1, 2\}$ and $B = \{a, b, c\}$.
 - (a) Define an injective function $f: A \to B$. For this function f, define a function $f': B \to A$ such that $f' \circ f = id_A$. Is there a surjective function from A to B? Why?
 - (b) Define a surjective function $g: B \to A$. For this function g, define a function $g': A \to B$ such that $g \circ g' = id_B$. Is there an injective function from B to A? Why?
- **Task 6** Show that $f: A \to B$ is injective if and only if there exists a function $g: B \to A$ such that $g \circ f = id_A$, i.e., f has a left inverse.

- **Task 7** Show that $f: A \to B$ is surjective if and only if there exists a function $g: B \to A$ such that $f \circ g = id_B$, i.e., f has a right inverse.
- **Task 8** Consider the relation \sim on sets, defined as $A \sim B$ if there exists a bijection $f: A \to B$. Prove that \sim is an equivalence relation.