

- A set S is a collection of different objects, the elements of S
- We write $x \in S$ for `x is an element of S'
- A set `can' be specified by
 (1) listing its elements, e.g. S = {1,3,7,18}
 (2) specifying a property, e.g. S = {x | P(x)}

P is a proposition over x, which is true or false

- Sets can be finite e.g. {♣,♥} or infinite e.g. ℕ
- The set with no elements is the empty set, notation \varnothing
- The `number' of elements in a set S is the cardinality of S, notation |S|

Sets - properties

- All elements of a set are different
- The elements of a set are not ordered
- The same set can be specified in different ways, e.g. $\{1,2,3,4\},\{2,3,1,4\},\{i\mid i\in\mathbb{N}\text{ and }0\leq i\leq5\}$

Subsets, equality

Def. A = B iff $A \subseteq B$ and $B \subseteq A$

Def. $A \subset B$ iff $A \subseteq B$ and $A \neq B$

Russell's paradox

- Let P be the set of all sets that are not an element of itself
- Hence, $P = \{ x \mid x \notin x \}$
- Is $P \in P$?
- Contradiction!

The need for a universal set U $S = \{x \mid x \in U \text{ and } P(x)\}$

Operations on sets

Def. Difference (Differenz) $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

Given a universal set U

A A\B

В

Def. Complement (Komplement) $A^c = \{x \mid x \in U \text{ and } x \notin A\}$

Properties of sets

Properties of sets

11.
$$X \cup \emptyset = X$$
12. $X \cap Y = Y \cap X$ (commutativity)13. $X \cup Y = Y \cup X$ (commutativity)14. $X \cap (Y \cap Z) = (X \cap Y) \cap Z$ (associativity)15. $X \cup (Y \cup Z) = (X \cup Y) \cup Z$ (associativity)16. $X \cap (X \cup Y) = X$ (absorption)17. $X \cup (X \cap Y) = X$ (absorption)18. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ (distributivity)19. $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$ (distributivity)20. $X \setminus Y \subseteq X$

Properties of sets

21	$(\mathbf{X} \setminus \mathbf{X}) \circ \mathbf{X} - \boldsymbol{\alpha}$
ΖΙ.	$(\land \land \land) \cap I = \emptyset$
22.	$X \cup Y = X \cup (Y \setminus X)$
23.	$X \setminus X = \emptyset$
24.	$X \setminus \emptyset = X$
25.	$\emptyset \setminus X = \emptyset$
26.	If $X \subseteq Y$, then $X \setminus Y = \emptyset$
27.	$(X^c)^c = X$
28.	$(X \cap Y)^c = X^c \cup Y^c$ (De Morgan)
29.	$(X \cup Y)^c = X^c \cap Y^c$ (De Morgan)
30.	$X \times \emptyset = \emptyset \emptyset \times X = \emptyset$
31.	$\varnothing \mathbf{X} \mathbf{X} = \varnothing$
32.	If $X \subseteq Y$, then $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$ 9