Back to

Naive Set Theory
Relations

Product of multiple sets

Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

Product of multiple sets

Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

ordered pairs

Therefore, we define

$$
A \times B \times C=\{(x, y, z) \mid x \in A \text { and } y \in B \text { and } z \in C\}
$$

Product of multiple sets

Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

Therefore, we define

$$
A \times B \times C=\{(x, y, z) \mid x \in A \text { and } y \in B \text { and } z \in C\}
$$

In general, for sets $A_{1}, A_{2}, \ldots, A_{n}$ with $n \geq I$,

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\prod_{1 \leq i \leq n} A_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in A_{i} \text { for } I \leq i \leq n\right\}
$$

Product of multiple sets

Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

ordered pairs

Therefore, we define

$$
A \times B \times C=\{(x, y, z) \mid x \in A \text { and } y \in B \text { and } z \in C\}
$$

In general, for sets $A_{1}, A_{2}, \ldots, A_{n}$ with $n \geq I$,
sequence of length n
$A_{1} \times A_{2} \times \ldots \times A_{n}=\prod_{1 \leq i \leq n} A_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in A_{i}\right.$ for $\left.I \leq i \leq n\right\}$

Product of multiple sets

Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

ordered pairs

Therefore, we define

$$
\left.A \times B \times C=\left(\begin{array}{c}
\text { if } A_{i}=A \text { for all } i \\
\text { then the product is } \\
\text { denoted } A^{n}
\end{array}\right) \text { and } y \in B \text { and } z \in C\right\}
$$

In general, for cts $A_{1}, A_{2}, \ldots, A_{n}$ with $n \geq I$,
sequence of
length n length n

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

Def. R is a relation on A if $R \subseteq A \times A$

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B
similarly, unary relation
(subset), n-ary relation...
Def. R is a relation on A if $R \subseteq A \times A$

Special relations

A relation $R \subseteq A \times A$ is:
reflexive
symmetric
transitive
iff for all $a \in A,(a, a) \in R$
iff for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
iff for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$
irreflexive iff for all $a \in A,(a, a) \notin R$
antisymmetric iff \quad for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$ then $a=b$
asymmetric iff for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \notin R$ total
iff for all $a, b \in A,(a, b) \in R$ or $(b, a) \in R$

Special relations

A relation $R \subseteq A \times A$ is:
reflexive
symmetric
transitive
iff for all $a \in A,(a, a) \in R$
iff for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
iff for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$
irreflexive iff for all $a \in A,(a, a) \notin R$
antisymmetric iff \quad for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$ then $a=b$
asymmetric iff for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \notin R$ iff for all $a, b \in A,(a, b) \in R$ or $(b, a) \in R$
(infix) notation aRb for $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:
equivalence
partial order iff
strict order iff R is irreflexive and transitive
preorder iff R is reflexive and transitive
total (linear)
order iff R is a total partial order

Obvious properties

I. Every partial order is a preorder.
2. Every total order is a partial order.
3. Every total order is a preorder.
4. If $R \subseteq A \times A$ is a relation such that there are $a, b \in A$ with

$$
a \neq b,(a, b) \in R \text { and }(b, a) \in R,
$$

then R is not a partial order, nor a total order, nor a strict order.

Operations on relations

Let $R \subseteq A \times B$ and $S \subseteq B \times C$ be two relations. Their composition is the relation
$R \circ S=\{(a, c) \in A \times C \mid$ there is $b \in B$ s.t. $(a, b) \in R$ and $(b, c) \in S\}$

Operations on relations

Let $R \subseteq A \times \underline{B}$ and $S \subseteq B \times C$ be two relations. Their composition is the relation
$R \circ S=\{(a, c) \in A \times C \mid$ there is $b \in B$ s.t. $(a, b) \in R$ and $(b, c) \in S\}$

Operations on relations

Let $R \subseteq A \times \underline{B}$ and $S \subseteq B \times C$ be two relations. Their composition is the relation
$R \circ S=\{(a, c) \in A \times C \mid$ there is $b \in B$ s.t. $(a, b) \in R$ and $(b, c) \in S\}$
relational composition is associative $(R \circ S) \circ T=R \circ(S \circ T)$

Operations on relations

Let $R \subseteq A \times B$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation
$R \circ S=\{(a, c) \in A \times C \mid$ there is $b \in B$ s.t. $(a, b) \in R$ and $(b, c) \in S\}$
relational composition is associative $(R \circ S) \circ T=R \circ(S \circ T)$
so again we write
$R^{n}=\frac{R \circ R \circ \ldots \circ R}{n \text { times }}$

Operations on relations

Let $R \subseteq A \times B$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation
$R \circ S=\{(a, c) \in A \times C \mid$ there is $b \in B$ s.t. $(a, b) \in R$ and $(b, c) \in S\}$
relational composition is associative $(R \circ S) \circ T=R \circ(S \circ T)$

> so again we write $R^{n}=\frac{R \circ R \circ \ldots \circ R}{n \text { times }}$

Let $R \subseteq A \times B$ be a relation. The inverse relation of R is the relation

$$
R^{-1}=\{(b, a) \in B \times A \mid(a, b) \in R\}
$$

Characterizations

Lemma: Let R be a relation over the $\operatorname{set} A$. Then
I. R is reflexive iff $\Delta_{A} \subseteq R$
2. R is symmetric iff $R \subseteq R^{-1}$
3. R is transitive iff $R^{2} \subseteq R$

Important equivalence

 on \mathbb{Z}Def. For a natural number n, the relation $\equiv{ }_{n}$ is defined as
$i \equiv{ }_{n} j \quad$ iff $n \mid i-j$

Important equivalence

 on \mathbb{Z}Def. For a natural number n, the relation \equiv_{n} is defined as
$\mathrm{i} \equiv_{\mathrm{n}} \mathrm{j}$ iff $\mathrm{n} \mid \mathrm{i}-\mathrm{j}$
[iff $i-j$ is a multiple of n]
[iff there exists $k \in \mathbb{Z}$ s.t. $i-j=k \cdot n$]
[iff $\exists k(k \in \mathbb{Z} \wedge i-j=k \cdot n)]$

Important equivalence

 on \mathbb{Z}Def. For a natural number n, the relation \equiv_{n} is defined as
$\mathrm{i} \equiv{ }_{\mathrm{n}} \mathbf{j} \quad$ iff $\mathrm{n} \mid \mathrm{i}-\mathrm{j}$
[iff $i-j$ is a multiple of n]
[iff there exists $k \in \mathbb{Z}$ s.t. $i-j=k \cdot n]$
[iff $\quad \exists \mathrm{k}(\mathrm{k} \in \mathbb{Z} \wedge \mathrm{i}-\mathrm{j}=\mathrm{k} \cdot \mathrm{n})$]

Lemma: The relation \equiv_{n} is an equivalence for every n .

Equivalences classes

Def. Let R be an equivalence over A and $a \in A$. Then

$$
[a]_{R}=\{b \in A \mid(a, b) \in R\}
$$

Equivalences classes

Def. Let R be an equivalence over A and $a \in A$. Then

$$
[a]_{R}=\{b \in A \mid(a, b) \in R\} \Longrightarrow \begin{aligned}
& \text { the equivalence } \\
& \text { class of a }
\end{aligned}
$$

Equivalences classes

Def. Let R be an equivalence over A and $a \in A$. Then

$$
[a]_{R}=\{b \in A \mid(a, b) \in R\} \quad \begin{aligned}
& \text { the equivalence } \\
& \text { class of a }
\end{aligned}
$$

Lemma El : Let R be an equivalence over the set A . Then for all $a, b \in A,[a]_{R}=[b]_{R}$ or $[a]_{R} \cap[b]_{R}=\varnothing$

Equivalences classes

Def. Let R be an equivalence over A and $a \in A$. Then

$$
[a]_{R}=\{b \in A \mid(a, b) \in R\} \neq \begin{gathered}
\text { the equivalence } \\
\text { class of } a
\end{gathered}
$$

Lemma El : Let R be an equivalence over the set A . Then for all $a, b \in A,[a]_{R}=[b]_{R}$ or $[a]_{R} \cap[b]_{R}=\varnothing$

Describe the equivalence classes of \equiv_{n} How many classes are there?

Unions and intersections of multiple sets

Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$

$$
A \quad A \cup B \quad B
$$

Intersection (Durchschnitt) $\mathrm{A} \cap \mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in \mathrm{B}\}$
A and B are disjoint if $A \cap B=\varnothing \quad A \quad A \cap B \quad B$

Unions and intersections

of multiple sets

Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \quad A \cup B \quad B$
Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$

A and B are disjoint if $A \cap B=\varnothing$

$A \quad A \cap B \quad B$

In general, for sets $A_{1}, A_{2}, \ldots, A_{n}$ with $n \geq I$,
$A_{I} \cup A_{2} \cup \ldots \cup A_{n}=\cup I \leq i \leq n A_{i}=\left\{x \mid x \in A_{i}\right.$ for some $\left.i \in\{I, . . n\}\right\}$
$A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\bigcap_{I \leq i \leq n} A_{i}=\left\{x \mid x \in A_{i}\right.$ for all $\left.i \in\{I, . . n\}\right\}$

Unions and intersections of multiple sets

Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$

$$
A \quad A \cup B \quad B
$$

Intersection (Durchschnitt) $\mathrm{A} \cap \mathrm{B}=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in \mathrm{B}\}$
A and B are disjoint if $A \cap B=\varnothing \quad A \quad A \cap B \quad B$

Unions and intersections

of multiple sets

Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$

$$
A \quad A \cup B \quad B
$$

Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$
A and B are disjoint if $A \cap B=\varnothing$
$A \quad A \cap B \quad B$
In general, for a family of sets $\left(A_{i} \mid i \in I\right)$
$\cup_{i \in I} A_{i}=\left\{x \mid x \in A_{i}\right.$ for some $\left.i \in I\right\}$
$\cap_{i \in I} A_{i}=\left\{x \mid x \in A_{i}\right.$ for all $\left.i \in I\right\}$

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then
$\left([a]_{R}, a \in A\right)$ is a family of sets.

Back to equivalence classes

Example: Let R be an equivalence over A and $\mathrm{a} \in \mathrm{A}$. Then
$\left([a]_{R}, a \in A\right)$ is a family of sets.
all equivalence classes of R

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

$$
\left([a]_{R}, a \in A\right) \text { is a family of sets. } \quad \begin{gathered}
\text { all equivalence } \\
\text { classes of } R
\end{gathered}
$$

Lemma E2: $A=\cup_{a \in A}[a]_{R}$. The union is disjoint.

Partitions

Partitions

Def. Let X be a set. A subset P of the powerset $P(X)$ is a partition (Klasseneinteilung) of X if it satisfies:
(I) For all $A \in P, A \neq \varnothing$
(2) For all $A, B \in P$, if $A \neq B$ then $A \cap B=\varnothing$
(3) $\cup_{A \in P} A=X$

Partitions

Def. Let X be a set. A subset P of the powerset $P(X)$ is a partition (Klasseneinteilung) of X if it satisfies:
(I) For all $A \in P, A \neq \varnothing$
(2) For all $A, B \in P$, if $A \neq B$ then $A \cap B=\varnothing$
(3) $\cup_{A \in P} A=X$

Partitions

Def. Let X be a set. A subset P of the powerset $P(X)$ is a partition (Klasseneinteilung) of X if it satisfies:
(I) For all $A \in P, A \neq \varnothing$
(2) For all $A, B \in P$, if $A \neq B$

that are non-empty, pairwise disjoint,

and their union equals X
(3) $\cup_{A \in P} A=X$

Partitions = Equivalences

Partitions $=$ Equivalences

Theorem PE: Let X be a set.
(I) If R is an equivalence on X, then the set

$$
P(R)=\left\{[x]_{R} \mid x \in X\right\}
$$

is a partition of X.
(2) If P is a partition of X, then the relation $R(P)=\{(x, y) \in X x X \mid$ there is $A \in P$ such that $x, y \in A\}$ is an equivalence relation.

Moreover, the assignments $R \mapsto P(R)$ and $P \mapsto R(P)$ are inverse to each other, i.e., $R(P(R))=R$ and $P(R(P))=P$.

Transitive closure

Transitive closure

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^{+}, is the relation

$$
R^{+}=\cup_{n \in \mathbb{N}, n \neq 0} R^{n}
$$

Transitive closure

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^{+}, is the relation

$$
R^{+}=\cup_{n \in N, n \neq 0} R^{n} \longrightarrow R^{n+1}=R^{n} \circ R
$$

Transitive closure

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^{+}, is the relation

$$
R^{+}=\cup_{n \in N, n \neq 0} R^{n} \longrightarrow R^{n+1}=R^{n} \circ R
$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^{*}, is the relation

$$
R^{*}=\cup_{n \in N} R^{n}
$$

Transitive closure

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^{+}, is the relation

$$
R^{+}=\cup_{n \in N, n \neq 0} R^{n} \longrightarrow R^{n+1}=R^{n} \circ R
$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^{*}, is the relation

$$
R^{*}=U_{n \in \mathbb{N}} R^{n} \longrightarrow \quad R^{R 0}=\Delta_{R}
$$

Transitive closure

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^{+}, is the relation

$$
R^{+}=\cup_{n \in \mathbb{N}, \mathrm{n} \neq 0} \mathrm{R}^{\mathrm{n}}
$$

$$
R^{n+1}=R^{n} \circ R
$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^{*}, is the relation

$$
R^{*}=\cup_{n \in N} R^{n}
$$

Proposition TC: Let R be a relation on X . The transitive closure of R is the smallest transitive relation that contains R. The reflexive and transitive closure of R is the smallest reflexive and transitive relation that contains R.

