Back to Naive Set Theory Relations

Direct product (Kartesisches Produkt) $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$ ordered pairs $(A \times B) \times C \neq A \times (B \times C)$

Therefore, we define

 $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$

Therefore, we define $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$

In general, for sets A_1 , A_2 , ..., A_n with $n \ge I$,

 $A_{I} \times A_{2} \times ... \times A_{n} = \prod_{1 \leq i \leq n} A_{i} = \{(x_{1}, x_{2}, ..., x_{n}) \mid x_{i} \in A_{i} \text{ for } I \leq i \leq n\}$

Therefore, we define $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$

In general, for sets A_1 , A_2 , ..., A_n with $n \ge 1$,

sequence of length n

 $A_{I} \times A_{2} \times ... \times A_{n} = \prod_{1 \leq i \leq n} A_{i} = \{(x_{1}, x_{2}, ..., x_{n}) \mid x_{i} \in A_{i} \text{ for } I \leq i \leq n\}$

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

Def. R is a relation on A if $R \subseteq A \times A$

some relations are special

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

similarly, unary relation (subset), n-ary relation...

Def. R is a relation on A if $R \subseteq A \times A^{\vee}$

some relations are special

Special relations

A relation $R \subseteq A \times A$ is:

reflexive	iff	for all $a \in A$, (a,a) $\in R$
symmetric	iff	for all a,b \in A, if (a,b) \in R, then (b,a) \in R
transitive	iff	for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
		then $(a,c) \in R$
irreflexive	iff	for all $a \in A$, (a,a) $\notin R$
antisymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
		then a = b
asymmetric	iff	for all a,b \in A, if (a,b) \in R, then (b,a) \notin R
total	iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$

Special relations

A relation $R \subseteq A \times A$ is:

reflexive	iff	for all $a \in A$, (a,a) $\in R$
symmetric	iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
transitive	iff	for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
		then $(a,c) \in R$
irreflexive	iff	for all $a \in A$, (a,a) $\notin R$
antisymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
		then a = b
asymmetric	iff	for all a,b \in A, if (a,b) \in R, then (b,a) \notin R
total	iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$

(infix) notation aRb for $(a,b) \in R$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:

- equivalence iff R is reflexive, symmetric, and transitive
- partial order iff R is reflexive, antisymmetric, and transitive
- strict order iff R is irreflexive and transitive
- preorder iff R is reflexive and transitive

total (linear) order

iff R is a total partial order

Obvious properties

- I. Every partial order is a preorder.
- 2. Every total order is a partial order.
- 3. Every total order is a preorder.

4. If $R \subseteq A \times A$ is a relation such that there are $a, b \in A$ with $a \neq b, (a,b) \in R$ and $(b,a) \in R$, then R is not a partial order, nor a total order, nor a strict order.

Let $R \subseteq A \times B$ and $S \subseteq B \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

relational composition is associative $(R \circ S) \circ T = R \circ (S \circ T)$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

relational composition is associative $(R \circ S) \circ T = R \circ (S \circ T)$

so again we write $R^n = R \circ R \circ ... \circ R$ n times

Let $R \subseteq A \ge B$ be a relation. The inverse relation of R is the relation

$$\mathsf{R}^{-1} = \{(\mathsf{b},\mathsf{a}) \in \mathsf{B} \times \mathsf{A} \mid (\mathsf{a},\mathsf{b}) \in \mathsf{R}\}$$

Characterizations

Lemma: Let R be a relation over the set A. Then

- I. R is reflexive iff $\Delta_A \subseteq R$
- 2. R is symmetric iff $R \subseteq R^{-1}$
- 3. R is transitive iff $R^2 \subseteq R$

Important equivalence on \mathbb{Z}

Def. For a natural number n, the relation \equiv_n is defined as

 $i \equiv_n j$ iff $n \mid i - j$

$\begin{array}{l} \text{Important equivalence} \\ \text{on } \mathbb{Z} \end{array}$

Def. For a natural number n, the relation \equiv_n is defined as

```
i ≡<sub>n</sub> j iff n | i - j

[iff i-j is a multiple of n ]

[iff there exists k \in \mathbb{Z} s.t. i-j = k · n ]

[iff ∃k (k ∈ \mathbb{Z} ∧ i-j = k · n)]
```

$\begin{array}{l} \text{Important equivalence} \\ \text{on } \mathbb{Z} \end{array}$

Def. For a natural number n, the relation \equiv_n is defined as

$$\begin{split} \mathbf{i} &\equiv_{n} \mathbf{j} \quad \text{iff } n \mid \mathbf{i} - \mathbf{j} \\ & \left[\text{iff } \mathbf{i} - \mathbf{j} \text{ is a multiple of } n \end{array} \right] \\ & \left[\text{iff there exists } \mathbf{k} \in \mathbb{Z} \text{ s.t. } \mathbf{i} - \mathbf{j} = \mathbf{k} \cdot \mathbf{n} \end{array} \right] \\ & \left[\text{iff } \exists \mathbf{k} \left(\mathbf{k} \in \mathbb{Z} \land \mathbf{i} - \mathbf{j} = \mathbf{k} \cdot \mathbf{n} \right) \right] \end{split}$$

Lemma: The relation \equiv_n is an equivalence for every n.

Def. Let R be an equivalence over A and $a \in A$. Then

 $[a]_R = \{ b \in A \mid (a, b) \in R \}$

Def. Let R be an equivalence over A and $a \in A$. Then

Def. Let R be an equivalence over A and $a \in A$. Then

Lemma E1: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Def. Let R be an equivalence over A and $a \in A$. Then

Lemma EI: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Task: Describe the equivalence classes of \equiv_n How many classes are there?

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В Α Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ Α $A \cap B$ В

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ Α **A** ∩ **B** В In general, for sets A_1 , A_2 , ..., A_n with $n \ge 1$,

 $A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for some } i \in \{1, ...n\}\}$

 $A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for all } i \in \{1,..n\}\}$

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В Α Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ Α $A \cap B$ В

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ Α A ∩ B В In general, for a family of sets $(A_i | i \in I)$

$$\bigcup_{i \in I} A_i = \{ x \mid x \in A_i \text{ for some } i \in I \}$$

 $\bigcap_{i \in I} A_i = \{ x \mid x \in A_i \text{ for all } i \in I \}$

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets.

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets.

all equivalence classes of R

Lemma E2: $A = \bigcup_{a \in A} [a]_R$. The union is disjoint.

Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

(1) For all
$$A \in P$$
, $A \neq \emptyset$
(2) For all $A, B \in P$, if $A \neq B$
then $A \cap B = \emptyset$
(3) $\bigcup_{A \in P} A = X$

Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

(1) For all $A \in P$, $A \neq \emptyset$ (2) For all $A, B \in P$, if $A \neq B$ then $A \cap B = \emptyset$ (3) $\bigcup_{A \in P} A = X$

X

Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

(1) For all
$$A \in P$$
, $A \neq \emptyset$
(2) For all $A, B \in P$, if $A \neq B$
then $A \cap B = \emptyset$
(3) $\bigcup_{A \in P} A = X$

Partitions = Equivalences

Partitions = Equivalences

Theorem PE: Let X be a set.

(1) If R is an equivalence on X, then the set $P(R) = \{ [x]_R | x \in X \}$ is a partition of X.

(2) If P is a partition of X, then the relation $R(P) = \{(x,y) \in X \times X \mid \text{there is } A \in P \text{ such that } x, y \in A\}$ is an equivalence relation.

Moreover, the assignments $R \mapsto P(R)$ and $P \mapsto R(P)$ are inverse to each other, i.e., R(P(R)) = R and P(R(P)) = P.

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

 $\mathbf{R^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} \mathbf{R}^{n}}$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$R^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} R^{n} \qquad \qquad R^{n+1} = R^{n} \circ R$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$\mathbf{R}^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} \mathbf{R}^{n} \qquad \qquad \mathbf{R}^{n+1} = \mathbf{R}^{n} \circ \mathbf{R}$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R*, is the relation

$$\mathbf{R}^* = \bigcup_{n \in \mathbb{N}} \mathbf{R}^n$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$\mathbf{R}^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} \mathbf{R}^{n} \qquad \qquad \mathbf{R}^{n+1} = \mathbf{R}^{n} \circ \mathbf{R}$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R*, is the relation

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$\mathbf{R}^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} \mathbf{R}^{n} \qquad \qquad \mathbf{R}^{n+1} = \mathbf{R}^{n} \circ \mathbf{R}$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R*, is the relation

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

Proposition TC: Let R be a relation on X. The transitive closure of R is the smallest transitive relation that contains R. The reflexive and transitive closure of R is the smallest reflexive and transitive R.