Predicate logic

Limitations of propositional logic

Propositional logic only allows us to reason about completed statements about things, not about the things themselves.

Example

Some chicken cannot fly All chicken are birds

Some birds cannot fly

Example

Every player except the winner looses a match

Unary predicate (example)

Consider the statement $2 \mathrm{~m}>3$.

Whether this statement is true or false depends on the value of m (and on the domain of values).

Note: $2 m>3 \stackrel{\text { val }}{=} m>3 / 2$ on \mathbb{Z} and \mathbb{R}

$$
2 m>3 \stackrel{\text { val }}{=} m \geq 2 \quad \text { on } \mathbb{Z} \text { but not on } \mathbb{R}
$$

Binary predicate (example)

The statement $3 \mathrm{~m}+\mathrm{n}>3$ is a binary predicate on $\mathbb{R} \times \mathbb{N}$.

a binary
relation

Predicates

In general, an n -ary predicate is an n -ary relation.
If it is on a domain D, then it's a relation $P\left(x_{1}, \ldots, x_{n}\right) \subseteq D^{n}$ or equivalently a function $P: D^{n} \rightarrow\{0, I\}$.

$2 m>3$

true for certain values of the variables

We can turn a predicate, into a proposition in three ways:
I. By assigning values to the variables.
2. By universal quantification.
3. By existential quantification.
for $m=2$
$2 \cdot 2>3$
is a true proposition

Universal quantification

The unary predicate $2 m>3$ on \mathbb{Z} can be turned into a proposition by universal quantification:

For all m in $\mathbb{Z}, 2 m>3$

Notation:
false, e.g.
for $m=1$
other standard (!) notation:
$\forall x(P(x) \Rightarrow Q(x))$ $\forall x . P(x) \Rightarrow Q(x)$

In general: $\quad \forall_{x}[P(x): Q(x)]$ for "all x satisfying P satisfy Q "

Existential quantification

The unary predicate $2 m>3$ on \mathbb{Z} can also be turned into a proposition by existential quantification:

There exists m in $\mathbb{Z}, 2 m>3$

Notation:

Quantification

The binary predicate $3 m+n>3$ on $\mathbb{R} \times \mathbb{N}$ can also be turned into a proposition by quantification:

One way is:

$$
\exists_{\mathrm{m}}\left[\mathrm{~m} \in \mathbb{R}: \forall_{\mathrm{n}}[\mathrm{n} \in \mathbb{N}: 3 \mathrm{~m}+\mathrm{n}>3]\right]
$$

other standard (!) notation:
unary
binary predicate
$\exists \mathrm{m}(\mathrm{m} \in \mathbb{R} \wedge \forall \mathrm{n}(\mathrm{n} \in \mathbb{N} \Rightarrow 3 \mathrm{~m}+\mathrm{n}>3))$
proposition, nullary predicate

Additional Notation Rules

We write $\forall_{x}[P]$ for $\forall_{x}[T: P]$

We also write $\exists_{\mathrm{m}}, \forall_{\mathrm{n}}[(\mathrm{m}, \mathrm{n}) \in \mathbb{R} \times \mathbb{N}: 3 \mathrm{~m}+\mathrm{n}>3]$ for $\exists_{m}\left[m \in \mathbb{R}: \forall_{n}[n \in \mathbb{N}: 3 m+n>3]\right]$

And even $\exists_{m, n}[(m, n) \in \mathbb{R} \times \mathbb{N}: 3 m+n>3]$ for $\exists_{m}\left[m \in \mathbb{R}: \exists_{n}[n \in \mathbb{N}: 3 m+n>3]\right]$
but only for the same quantifier!

Quantification - task

Let P be the set of all tennis players.
Let $w \in P$ be the winner.
For $\mathrm{p}, \mathrm{q} \in \mathrm{P}$, write $\mathrm{p} \neq \mathrm{q}$ for " p and q are different players".
Let M be the set of all matches.
For $p \in P$ and $m \in M$, write $L(p, m)$ for
"player p loses match m".
Write the following sentence as a formula with predicates and quantifiers:

Every player except the winner loses a match.

Equivalences with quantifiers

Renaming bound variables

Bound variables

$$
\begin{aligned}
& \forall_{x}[P: Q] \stackrel{v a l}{=} \forall_{y}[P[y / x]: Q[y / x]] \\
& \exists_{x}[P: Q] \stackrel{v a l}{=} \exists_{y}[P[y / x]: Q[y / x]]
\end{aligned}
$$

if y does not occur in
P or Q (not even in $\forall y, \exists y$)

Domain splitting

Domain splitting

$$
\begin{aligned}
& \forall_{x}[P \vee Q: R] \stackrel{v a l}{=} \forall_{x}[P: R] \wedge \forall_{x}[Q: R] \\
& \exists_{x}[P \vee Q: R] \stackrel{v a l}{=} \exists_{x}[P: R] \vee \exists_{x}[Q: R]
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \forall_{x}\left[x \leqslant 1 \vee x \geqslant 5: x^{2}-6 x+5 \geqslant 0\right] \\
& \stackrel{\text { val }}{=} \forall_{x}\left[x \leqslant 1: x^{2}-6 x+5 \geqslant 0\right] \wedge \forall_{x}\left[x \geqslant 5: x^{2}-6 x+5 \geqslant 0\right]
\end{aligned}
$$

$$
\exists_{k}\left[0 \leqslant k \leqslant n: k^{2} \leqslant 10\right]
$$

$$
\stackrel{v a l}{=} \exists_{k}\left[0 \leqslant k \leqslant n-1 \vee k=n: k^{2} \leqslant 10\right]
$$

$$
\stackrel{\text { val }}{=} \exists_{k}\left[0 \leqslant k \leqslant n-1: k^{2} \leqslant 10\right] \vee \exists_{k}\left[k=n: k^{2} \leqslant 10\right]
$$

Equivalences with quantifiers

One-element domain

$$
\begin{aligned}
& \forall_{x}[x=n: Q] \stackrel{\text { val }}{=} Q[n / x] \\
& \exists_{x}[x=n: Q] \stackrel{\text { val }}{=} Q[n / x]
\end{aligned}
$$

Example:

$$
\forall_{x}[x=3: 2 \cdot x \geqslant 1] \stackrel{v a l}{=} 2 \cdot 3 \geqslant 1
$$

"All Marsians are green"

Empty domain

$$
\begin{aligned}
& \forall_{x}[F: Q] \stackrel{\text { val }}{=} T \\
& \exists_{x}[F: Q] \stackrel{\text { val }}{=} F
\end{aligned}
$$

Domain weakening

Intuition: The following are equivalent

$$
\begin{array}{lll}
\forall_{x}[x \in D: A(x)] & \text { and } & \forall_{x}[x \in D \Rightarrow A(x)] \\
\exists_{x}[x \in D: A(x)] & \text { and } & \exists_{x}[x \in D \wedge A(x)]
\end{array}
$$

The same can be done to parts of the domain
Domain weakening

$$
\left.\mid \forall_{x}[P \wedge Q: R] \stackrel{v a l}{=} \forall_{x}[P: Q \Rightarrow R]\right) \quad P \wedge Q \stackrel{\text { val }}{=} P
$$

$$
\exists_{x}[P \wedge Q: R] \stackrel{v a l}{=} \exists_{x}[P: Q \wedge R]
$$

De Morgan with quantifiers

De Morgan

$\neg \forall_{x}[P: Q] \stackrel{v a l}{=} \exists_{x}[P: \neg Q]$
$\neg \exists_{x}[P: Q] \stackrel{\text { val }}{=} \forall_{x}[P: \neg Q]$
not for all = at least for one not
not exists $=$ for all not

Hence: $\neg \forall=\exists \neg$ and $\neg \exists=\forall \neg$
It holds further that:

$$
\begin{aligned}
& \neg \forall_{x} \neg=\exists_{x} \neg \neg=\exists_{x} \\
& \neg \exists_{x} \neg=\forall_{x} \neg \neg=\forall_{16}
\end{aligned}
$$

holds also for quantified formulas!

Substitution

meta rule

holds also for quantified formulas!

The rule of Leibniz

Other equivalences with quantifiers

Exchange trick

$$
\begin{aligned}
& \forall_{x}[P: Q] \stackrel{v a l}{=} \forall_{x}[\neg Q: \neg P] \\
& \exists_{x}[P: Q] \stackrel{\text { val }}{=} \exists_{x}[Q: P]
\end{aligned}
$$

No wonder as

$$
\begin{aligned}
& \forall_{x}[P: Q] \stackrel{\text { val }}{=} \forall_{x}[P \Rightarrow Q] \\
& \exists_{x}[P: Q] \stackrel{\text { val }}{=} \exists_{x}[P \wedge Q]
\end{aligned}
$$

Term splitting

$$
\begin{aligned}
& \forall_{x}[P: Q \wedge R] \stackrel{v a l}{=} \forall_{x}[P: Q] \wedge \forall_{x}[P: R] \\
& \exists_{x}[P: Q \vee R] \stackrel{v a l}{=} \exists_{x}[P: Q] \vee \exists_{x}[P: R]
\end{aligned}
$$

Other equivalences with quantifiers

Monotonicity of quantifiers

$$
\begin{aligned}
& \forall_{x}[P: Q \Rightarrow R] \Rightarrow\left(\forall_{x}[P: Q] \Rightarrow \forall_{x}[P: R]\right) \stackrel{\text { val }}{=} T \\
& \forall_{x}[P: Q \Rightarrow R] \Rightarrow\left(\exists_{x}[P: Q] \Rightarrow \exists_{x}[P: R]\right) \stackrel{v a l}{=} T
\end{aligned}
$$

tautologies

Lemma El: $\quad P \stackrel{v a l}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology. val still hold (in Lemma W4: $\quad P \models Q$ iff $P \Rightarrow Q$ is a tautology. predicate logic)
Lemma W5: If $Q \stackrel{v a l}{\models} R$ then $\forall_{x}[P: Q] \stackrel{v a l}{\models} \forall_{x}[P: R]$.

