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The structure of natural
numbers

On natural numbers we can define a notion of a successor; a mapping

s:IN = [N
by s(n) = n+1

The successor mapping imposes a structure on the set that enables us to
count:

|) there is a starting natural number O
2) for every natural number n, there is a next natural number s(n) = n+1.



(Some) Peano Axioms

Important properties
(1) Different natural numbers have different successors:

vn,m [n,m € N :s(m) =s(n) = m = n]

(2) O is not a successor: VYn[ne N :=(s(n) =0) ]

(3) All natural numbers except 0 are successors:

vn[ne N A(n=0):3m[m e N: n=s(m)]



There is more to it - induction

Imagine an infinite sequence of dominos

If we know that

|. Do falls
2. The dominos are close enough together so that if D; falls, then Di+) falls (for

all i € N)

Then we can conclude that every domino D, (n € N) falls!




Induction

P(O) AVi[ie N: P(i) = P(i+l)] = vn[ne N: P(n)]

Variant of the Peano Axiom:
Let K € N have the property that

(a) 0 e Kand
(b) forallne N,ne K= (ntl) e K.

_Then K = I\. )




P(O) AVi[ie N: P(i) = P(i+l)] = vn[ne N : P(n)]
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Inductive definitions

Inductive proof: truth is passed on

well defined by induction
Inductive definition: construction is passec

The sequence of real numbers (ai | i € IN) is

defined inductively by
ap =2
ai+| = 2ai - |

a0 | 4l | A2 | 43 | A4

For all n € N it holds that

an = 2n+|

proof by induction



Strong induction

vk[ke N: vi[je N aj<k:PG{]=PK)] = vn[neN: P(n)]

@ ( Definition of

(ai|ieN)

with strong
induction

an is defined via
a0, .., dn-|




Cardinality



Cardinals

Def Two sets A and B have the same cardinality (are

equinumerous) if there is a bijection f: A—B.
Notation A ~ B, or |A| = |B|.

Prop. The relation ~ is an equivalence relation on
sets.
Def A set A has at most as large cardinality as a set

B if there is an injection f: A—B.
Notation |A| < [B|.

Def. A set A has at least as large cardinality as a set Uhhizeieim (Cazel)
B if B is empty or there is a surjection f:A—B.
Notation |A| = |B. If |A|= |B]
and
Def. A set A has smaller cardinality than a set B if IB| < |A],
there is an injection f: A—B and there is no then
surjection f: A—B. Notation |A| < [B|. . IA| = |B. )




Operations on cardinals

- Let A and B be two disjoint sets. Then @
[Al + B = |A u BJ.

Let A and B be two sets. Then
|A| - |B] = |A x B].

- Let A and B be two sets. Then

|A| Bl = |AB| where AB is the set of all functions
from B to A,i.e. AB={f | f:B—A}

Def.
Def.
Def.
Note: 2 = [{0, 1}
Let A be a set. Then |P(A)| = 2IAl



Finite sets, finite cardinals

We write Ny for the set {0,1,..,k-1}. Then No= @.

We will also write k for |INi|.

Def A set A is finite if and only if |A| = | Nk|, @

for some k elN.We write then |A| = k.

A set A is finite if and only if there is a natural
ence .
number k €N and a bijection f:A = Ny

4 )
The operations on cardinals when restricted to finite cardinals
coincide with the operations on natural numbers!

This justifies the notation.




Infinite, countable and
uncountable sets

Time for a video!



Infinite, countable and
uncountable sets

We write No for the cardinality of natural numbers.
Hence No=|N].

Def. A set A is countable iff |A| = No.

NN is countable.

Prop.
7, is countable.

Q is countable.
Hence, every countable set

Def. A set is infinite iff |A| = No. is infinite

Def. A set is uncountable iff |[A| > No.

We write ¢ for |R]
Prop. R is uncountable.




Cardinals are unbounded

N
Theorem (Cantor)

For every set A we have |A| < |P(A)|.

\_ J

Hence, for every cardinal
there is a larger one.



