Derivations / Reasoning

Limitations of proofs by calculation

Proofs by calculation are formal and well-structured, but often undirected and not particularly intuitive.

Example

$$
\begin{aligned}
& P \wedge(P \vee Q) \stackrel{\text { val }}{\text { val }}(P \vee F) \wedge(P \vee Q) \\
& \text { val } \\
&= P \vee(F \wedge Q) \\
& \text { val } \\
&= P \vee F \\
& \stackrel{\text { val }}{=} P
\end{aligned}
$$

we can prove this more intuitively by reasoning

Conclusions

$$
P \wedge(P \vee Q) \stackrel{\text { nd }}{=} P P \wedge(P \vee Q) \Leftrightarrow P=T
$$

An example of a mathematical proof

Exposing logical structure

(sub)goal

Theorem
If x^{2} is even, then x is even $(x \in \mathbb{Z})$.
generating hypothesis
pure hypothesis
Assume that x is odd.

```
Then \(x=2 y+1\) for some \(y \in \mathbb{Z}\).
Then \(x^{2}=(2 y+1)^{2}=4 y^{2}+4 y+1=\)
                        \(2\left(2 y^{2}+2 y\right)+1\) and \(2 y^{2}+2 y \in \mathbb{Z}\).
```

So, x^{2} is odd
a contradiction.
So, x is even

Single inference rule

Q is a correct conclusion from n premises $P_{1}, . ., P_{n}$ iff

$$
\left(P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right) \stackrel{\text { val }}{\models} Q
$$

If $n=0$, then $P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n} \stackrel{\text { val }}{=} T$
Note that $T \vDash Q$ means that $Q \stackrel{\text { val }}{=} T$

Derivation

Q is a correct conclusion from n premises $P_{1}, . ., P_{n}$ iff

$$
\left(P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}\right) \stackrel{\text { val }}{\models} Q
$$

Two types of inference rules:
elimination rules
introduction rules
for drawing conclusions out of premises

for simplifying goals
(particularly useful) instances of the single inference rule
and one new special rule!

Conjunction elimination

Implication elimination

Conjunction introduction

How do we prove a conjunction?

$$
P \wedge Q \stackrel{v a l}{=P \wedge Q}
$$

\wedge-introduction

Implication introduction

Negrion introduction

How do we prove a negation?

ᄀ-introduction

Negrtion eilinination

F introduction

How do we prove F?

F-introduction

$$
13 \quad(k<m, l<m)
$$

F elimination

How do we use F in a proof?

F-elimination

it's very useful!

$$
F \stackrel{\text { val }}{=} P
$$

Double negation introduction

Double negation elimination

How do we use רר in a proof?

Proof by contradiction

(sub)goal

Theorem
If x^{2} is even, then x is even $(x \in \mathbb{Z})$.
Let $x \in \mathbb{Z}$
Assume x^{2} is even.
generating hypothesis
pure hypothesis
Assume that x is odd.
Then $x=2 y+1$ for some $y \in \mathbb{Z}$.
Then $x^{2}=(2 y+1)^{2}=4 y^{2}+4 y+1=$ $2\left(2 y^{2}+2 y\right)+1$ and $2 y^{2}+2 y \in \mathbb{Z}$.

So, x^{2} is odd
a contradiction.
So, x is even

Proof by contradiction

Disjunction introduction

How do we prove a disjunction?

\Rightarrow-intro

Disjunction introduction

How do we prove a disjunction?

\Rightarrow-intro

Disjunction elimination

Disjunction elimination

Proof by case distinction

How do we prove R by a case distinction?

Bi-implication introduction

Bi-implication elimination

How do we use a bi-implication in a proof?

Derivations / Reasoning with quantifiers

Proving a universal quantification

To prove

Proof

$\forall x\left[x \in \mathbb{Z} \wedge x \geq 2: x^{2}-2 x \geq 0\right]$

Let $x \in \mathbb{Z}$ be arbitrary and assume that $x \geq 2$.

Then, for this particular x, it holds that

$$
x^{2}-2 x=x(x-2) \geq 0 \quad(\text { Why? })
$$

Conclusion: $\forall x\left[x \in \mathbb{Z} \wedge x \geq 2: x^{2}-2 x \geq 0\right]$.

\forall introduction

Using a universal quantification

We know

$$
\forall x\left[x \in \mathbb{Z} \wedge x \geq 2: x^{2}-2 x \geq 0\right]
$$

Whenever we encounter an $a \in \mathbb{Z}$ such that $a \geq 2$,
we can conclude that $\mathrm{a}^{2}-2 \mathrm{a} \geq 0$.

For example, (523872-2-52387) ≥ 0
since $52387 \in \mathbb{Z}$ and $52387 \geq 2$.

\forall elimination

\exists introduction

\exists elimination

Proofs with \exists-introduction and \exists elimination are unnecessarily long and cumbersome...

There are alternatives!

Proving an existential quantification

To prove

$$
\exists x\left[x \in \mathbb{Z}: x^{3}-2 x-8 \geq 0\right]
$$

Proof

It suffices to find a witness, i.e., an $x \in \mathbb{Z}$ satisfying

$$
x^{3}-2 x-8 \geq 0
$$

$$
x=3 \text { is a witness, since } 3 \in \mathbb{Z} \text { and } 3^{3}-2 \cdot 3-8=13 \geq 0
$$

Conclusion: $\exists x\left[x \in \mathbb{Z}: x^{3}-2 x-8 \geq 0\right]$.
also $x=5$ is a witness.

Alternative \exists introduction

Using an existential quantification

We know

$$
\exists x[x \in \mathbb{R}: a-x<0<b-x]
$$

We can declare an $x \in \mathbb{Z}$ (a witness) such that

$$
a-x<0<b-x
$$

and use it further in the proof. For example:
From $\mathrm{a}-\mathrm{x}<0$, we get $\mathrm{a}<\mathrm{x}$.
From $b-x>0$, we get $\mathrm{x}<\mathrm{b}$.
Hence, a < b .

Alternative \exists elimination

