Sets

- A set S is a collection of different objects, the elements of S
- We write $x \in S$ for ' x is an element of S '
- A set 'can' be specified by
(I) listing its elements, e.g. $S=\{1,3,7,18\}$
(2) specifying a property, e.g. $S=\{x \mid P(x)\}$
- Sets can be finite e.g. $\{\bullet, \bullet\}$ or infinite e.g. \mathbb{N}
- The set with no elements is the empty set, notation \varnothing
- The 'number' of elements in a set S is the cardinality of S, notation $|S|$

Sets

- A set S is a collection of different objects, the elements of S
- We write $x \in S$ for ' x is an element of S '
- A set 'can’ be specified by

> P is a proposition over x which is true or false
(I) listing its elements, e.g. $S=\{1,3,7,18\}$
(2) specifying a property, e.g. $S=\{x \mid P(x)\}$

- Sets can be finite e.g. $\{\bullet, \bullet\}$ or infinite e.g. \mathbb{N}
- The set with no elements is the empty set, notation \varnothing
- The `number' of elements in a set S is the cardinality of S, notation $|S|$

Sets - properties

- All elements of a set are different
- The elements of a set are not ordered
- The same set can be specified in different ways, e.g. $\{I, 2,3,4\},\{2,3, I, 4\},\{i \mid i \in \mathbb{N}$ and $0<i<5\}$

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$]

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B
[iff for all a, if $a \in A$, then $a \in B$]
$[$ iff $\forall a(a \in A \Rightarrow a \in B)]$

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$]
[iff $\forall \mathrm{a}(\mathrm{a} \in \mathrm{A} \Rightarrow \mathrm{a} \in \mathrm{B})]$

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$]
[iff $\forall a(a \in A \Rightarrow a \in B)]$

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$]
[iff $\forall a(a \in A \Rightarrow a \in B)]$

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$] [iff $\forall a(a \in A \Rightarrow a \in B)]$

Def. $\mathrm{A}=\mathrm{B}$ iff $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$

Subsets, equality

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$] [iff $\forall a(a \in A \Rightarrow a \in B)]$

Def. $\mathrm{A}=\mathrm{B}$ iff $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$
Def. $A \subset B$ iff $A \subseteq B$ and $A \neq B$

Operations on sets

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$

$$
A \quad A \cup B \quad B
$$

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$

Def. Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$

$$
A \quad A \cap B \quad B
$$

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \quad A \cup B \quad B$

Def. Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$
A and B are disjoint if $A \cap B=\varnothing$
$A \quad A \cap B \quad B$

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$

$$
A \quad A \cup B \quad B
$$

Def. Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$
A and B are disjoint if $A \cap B=\varnothing$
$A \quad A \cap B$

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

$$
A \quad A \backslash B
$$

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \quad A \cup B \quad B$

Def. Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$
A and B are disjoint if $A \cap B=\varnothing$
$A \quad A \cap B \quad B$

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

$$
A A \backslash B \quad B
$$

Def. Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \quad A \cup B \quad B$

Def. Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$
A and B are disjoint if $A \cap B=\varnothing$
$A \quad A \cap B \quad B$

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

$$
A \text { A } 1 \mathrm{~B} \quad \mathrm{~B}
$$

Def. Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y)+x \in A \text { and } y \in B\}
$$

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \quad A \cup B \quad B$

Def. Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$
A and B are disjoint if $A \cap B=\varnothing$
$A \quad A \cap B \quad B$

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

$$
A \text { A|B B }
$$

Def. Direct product (Kartesisches Produkt)

$$
A \times B=\{(x, y)+x \in A \text { and } y \in B\}
$$

Operations on sets

Def. Union (Vereinigung) $A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \quad A \cup B \quad B$

Def. Intersection (Durchschnitt) $A \cap B=\{x \mid x \in A$ and $x \in B\}$
A and B are disjoint if $A \cap B=\varnothing$
$A \quad A \cap B \quad B$

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

$$
A \text { A|B B }
$$

Def. Direct product (Kartesisches Produkt)

Def. Powerset (Potenzmenge) $\mathbb{D}(A)=\{X \mid X \subseteq A\}$

Russell's paradox

- Let P be the set of all sets that are not an element of itself
- Hence, $P=\{x \mid x \notin x\}$
- Is $P \in P$?
- Contradiction!

Russell's paradox

- Let P be the set of all sets that are not an element of itself
- Hence, $P=\{x \mid x \notin x\}$
- Is $P \in P$?
- Contradiction!

The need for a universal set U

$$
S=\{x \mid x \in U \text { and } P(x)\}
$$

Operations on sets

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

Operations on sets

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

Given a universal set U

Operations on sets

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

Given a universal set U

Def. Complement (Komplement) $A^{c}=\{x \mid x \in U$ and $x \notin A\}$ u A A^{c}

Operations on sets

Def. Difference (Differenz) $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

Given a universal set U

Def. Complement (Komplement) $A^{c}=\{x \mid x \in U$ and $x \notin A\}$
u
Hence $\quad \mathrm{Ac}=\mathrm{U} \backslash \mathrm{A}$

Properties of sets

1. $\varnothing \subseteq X$
2. If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$
3. $X \cap Y \subseteq X, X \cap Y \subseteq Y$
4. $X \subseteq X \cup Y, Y \subseteq X \cup Y$
5. If $X^{\prime} \subseteq Y^{\prime}$ and $X^{\prime \prime} \subseteq Y^{\prime \prime}$, then $X^{\prime} \cap X^{\prime \prime} \subseteq Y^{\prime} \cap Y^{\prime \prime}$
6. If $X^{\prime} \subseteq Y^{\prime}$ and $X^{\prime \prime} \subseteq Y^{\prime \prime}$, then $X^{\prime} \cup X^{\prime \prime} \subseteq Y^{\prime} \cup Y^{\prime \prime}$
7. $X \cap Y=X$ iff $X \subseteq Y$
8. $\mathrm{X} \cap \mathrm{X}=\mathrm{X}$ (idempotence)
9. $\mathrm{X} \cup \mathrm{X}=\mathrm{X}$ (idempotence)
10. $X \cap \varnothing=\varnothing$

Properties of sets

11. $X \cup \varnothing=X$
12. $X \cap Y=Y \cap X$ (commutativity)
13. $X \cup Y=Y \cup X$ (commutativity)
14. $X \cap(Y \cap Z)=(X \cap Y) \cap Z$ (associativity)
15. $X \cup(Y \cup Z)=(X \cup Y) \cup Z$ (associativity)
16. $X \cap(X \cup Y)=X$ (absorption)
17. $X \cup(X \cap Y)=X$ (absorption)
18. $\mathrm{X} \cap(\mathrm{Y} \cup \mathrm{Z})=(\mathrm{X} \cap \mathrm{Y}) \cup(\mathrm{X} \cap \mathrm{Z}) \quad$ (distributivity)
19. $X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$ (distributivity)
20. $X \backslash Y \subseteq X$

Properties of sets

$$
\begin{array}{ll}
\text { 21. } & (X \backslash Y) \cap Y=\varnothing \\
\text { 22. } & X \cup Y=X \cup(Y \backslash X) \\
\text { 23. } & X \backslash X=\varnothing \\
\text { 24. } & X \backslash \varnothing=X \\
\text { 25. } & \varnothing \backslash X=\varnothing \\
\text { 26. } & \text { If } X \subseteq Y, \text { then } X \backslash Y=\varnothing \\
\text { 27. } & (X)^{c}=X \\
\text { 28. } & (X \cap Y)^{c}=X^{c} \cup Y^{c} \quad \text { (De Morgan) } \\
\hline \text { 29. } & (X \cup Y)^{c}=X^{c} \cap Y^{c} \quad \text { (De Morgan) } \\
\text { 30. } & X X \varnothing=\varnothing \\
\text { 3I. } & \varnothing X X=\varnothing \\
\text { 32. } & \text { If } X \subseteq Y, \text { then } P(X) \subseteq P(Y)^{9} \\
\hline
\end{array}
$$

