

Logic = study of correct reasoning

In the beginning

Aristotle +/- 350 B.C.

Organon

19 syllogisms

Logic (Logos, Greek for word, understanding, reason) deals with general reasoning laws in the form of formulas with parameters.

Propositions

Def. A proposition (Aussage) is a grammatically correct sentence that is either true or false.

Connectives

- \wedge for "and"
- \vee for "or"
- ¬ for "not"
- \Rightarrow for "if .. then" or "implies"

 \Leftrightarrow for "if and only if"

logic deals with patterns! what matters are not particular propositions but the way in which (abstract) propositions are combined and what follows from them

Abstract propositions

...and their structure

Dropping parenthesis

Truth tables

Conjunction

Р	Q	P∧Q	
0	0	0	
0		0	
	0	0	
Ι			only true when both P and Q are true

Truth tables

Disjunction

Р	Q	P∨Q	
0	0	0	
0	I	Ι	
I	0	I	true when either or Q or both are
I	I	Ι	urue

Truth-functions

Truth-functions

a₁, ... a_n are the variables in P (and more) ordered in a sequence

Property: Every abstract proposition $P(a_1,..,a_n)$ with ordered and specified variables induces a truth-function.

Equivalence of propositions

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny M}}{=} Q$, iff they induce the same truth-function

on any sequence containing their common variables

Property: The relation [™] is an equivalence on the set of all abstract propositions

i.e., for all abstract propositions P, Q, R, (1) $P \stackrel{val}{=} P$; (2) if $P \stackrel{val}{=} Q$, then $Q \stackrel{val}{=} P$; and (3) if $P \stackrel{val}{=} Q$ and $Q \stackrel{val}{=} R$, then $P \stackrel{val}{=} R$

b	С	$\neg b$	$\neg c$	$b \land \neg b$	$c \land \neg c$
0	0				
0	Ι				
I	0				
I	Ι				

b	С	$\neg b$	$\neg c$	$b \land \neg b$	$c \land \neg c$
0	0	-			
0	Ι	Ι			
I	0	0			
Ι	Ι	0			

b	С	$\neg b$	$\neg c$	$b \land \neg b$	$c \land \neg c$
0	0	-	I		
0	Ι	-	0		
I	0	0	I		
I	Ι	0	0		

b	С	$\neg b$	$\neg c$	$b \land \neg b$	$c \land \neg c$
0	0	Ι	Ι	0	
0	Ι	Ι	0	0	
I	0	0	I	0	
Ι	I	0	0	0	

b	С	$\neg b$	$\neg c$	$b \land \neg b$	$c \land \neg c$
0	0	-	Ι	0	0
0	Η	-	0	0	0
I	0	0	Ι	0	0
I	Ι	0	0	0	0

Are the following equivalent? $b \land \neg b$ and $c \land \neg c$

b	С	$\neg b$	$\neg c$	$b \land \neg b$	$c \land \neg c$
0	0	-	Ι	0	0
0	Ι	Ι	0	0	0
I	0	0	I	0	0
I	Ι	0	0	0	0

Their truth values are the same, so they are equivalent $b \wedge \neg b \stackrel{val}{=} c \wedge \neg c$

Tautologies and contradictions

Def. An abstract proposition P is a tautology iff its truth-function is constant I.

all tautologies are equivalent

Abstract propositions

Definition

Basis (Case I) T and F are abstract propositions.

Basis (Case 2) Propositional variables are abstract propositions.

Step (Case 1)If P is an abstract proposition, then so is $(\neg P)$.Step (Case 2)If P and Q are abstract propositions, then so are
 $(P \land Q)$, $(P \lor Q)$, $(P \Rightarrow Q)$, and $(P \Leftrightarrow Q)$.

Propositional Logic Standard Equivalences

Commutativity
$$P \land Q \stackrel{val}{=} Q \land P$$
 $P \lor Q \stackrel{val}{=} Q \lor P$ $P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$

$$Commutativity$$

$$P \land Q \stackrel{val}{=} Q \land P$$

$$P \lor Q \stackrel{val}{=} Q \lor P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$P \Rightarrow Q \stackrel{val}{\neq} Q \Rightarrow P$$

$$\begin{array}{c|c}P & Q & P \\\hline 0 & 1 & P \\\hline 0 & 1 & 0\end{array} \qquad P$$

Associativity $(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$ $(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$ $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$

CommutativityAssociativity
$$P \land Q \stackrel{val}{=} Q \land P$$
 $(P \land Q) \land P$ $P \lor Q \stackrel{val}{=} Q \lor P$ $(P \lor Q) \lor P$ $P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$ $(P \Leftrightarrow Q) \Leftrightarrow R^{\prime}$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

CommutativityAssociativity
$$P \land Q \stackrel{val}{=} Q \land P$$
 $(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$ $P \lor Q \stackrel{val}{=} Q \lor P$ $(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$ $P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$ $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

CommutativityAssociativity
$$P \land Q \stackrel{val}{=} Q \land P$$
 $(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$ $P \lor Q \stackrel{val}{=} Q \lor P$ $(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$ $P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$ $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

CommutativityAssociativity
$$P \land Q \stackrel{val}{=} Q \land P$$
 $(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$ $P \lor Q \stackrel{val}{=} Q \lor P$ $(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$ $P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$ $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Idempotence and Double Negation

$$P \Rightarrow P \stackrel{val}{\neq} P$$
$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Idempotence and Double Negation

Idempotence
$$P \land P \stackrel{val}{=} P$$
 $P \lor P \stackrel{val}{=} P$

$$P \Rightarrow P \stackrel{val}{\neq} P$$
$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Double negation
$$\neg \neg P \stackrel{val}{=} P$$

Negation
$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Inversion
$$\neg T \stackrel{val}{=} F$$
 $\neg F \stackrel{val}{=} T$

Negation
$$\neg P \stackrel{val}{=} P \Rightarrow F$$

$$\begin{array}{c} \textbf{Contradiction} \\ P \land \neg P \stackrel{val}{=} F \end{array}$$

Inversion
$$\neg T \stackrel{val}{=} F$$
 $\neg F \stackrel{val}{=} T$

Negation
$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction
$$P \land \neg P \stackrel{val}{=} F$$

Excluded Middle
$$P \lor \neg P \stackrel{val}{=} T$$

Inversion
$$\neg T \stackrel{val}{=} F$$
 $\neg F \stackrel{val}{=} T$

Negation
$$\neg P \stackrel{val}{=} P \Rightarrow F$$

$$\begin{array}{c} \textbf{Contradiction} \\ P \land \neg P \stackrel{val}{=} F \end{array}$$

Excluded Middle
$$P \lor \neg P \stackrel{val}{=} T$$

$$\begin{array}{l} F \land T \stackrel{val}{=} \\ P \land F \stackrel{val}{=} \\ P \land F \stackrel{val}{=} \\ P \lor T \stackrel{val}{=} \\ P \lor F \stackrel{val}{=} \end{array}$$

Inversion
$$\neg T \stackrel{val}{=} F$$
 $\neg F \stackrel{val}{=} T$

Negation
$$\neg P \stackrel{val}{=} P \Rightarrow F$$

$$\begin{array}{c} \textbf{Contradiction} \\ P \land \neg P \stackrel{val}{=} F \end{array}$$

Excluded Middle
$$P \lor \neg P \stackrel{val}{=} T$$

T/F - elimination

$$P \land T \stackrel{val}{=} P$$

$$P \land F \stackrel{val}{=} F$$

$$P \lor T \stackrel{val}{=} T$$

$$P \lor F \stackrel{val}{=} P$$

Distributivity, De Morgan

Distributivity

 $P \land (Q \lor R) \stackrel{val}{=} (P \land Q) \lor (P \land R)$ $P \lor (Q \land R) \stackrel{val}{=} (P \lor Q) \land (P \lor R)$

Distributivity, De Morgan

Distributivity

 $P \land (Q \lor R) \stackrel{val}{=} (P \land Q) \lor (P \land R)$ $P \lor (Q \land R) \stackrel{val}{=} (P \lor Q) \land (P \lor R)$

De Morgan

$$\neg (P \land Q) \stackrel{val}{=} \neg P \lor \neg Q$$

$$\neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
 $P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
 $P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
 $P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

$$P \Rightarrow Q \stackrel{val}{\neq} \neg P \Rightarrow \neg Q$$

$$\land$$

$$common \\mistake!$$

Bi-implication and Selfequivalence

Bi-implication
$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Bi-implication and Selfequivalence

Bi-implication
$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence
$$P \Leftrightarrow P \stackrel{val}{=}$$

Bi-implication and Selfequivalence

Bi-implication
$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence
$$P \Leftrightarrow P \stackrel{val}{=} T$$

Calculating with equivalent propositions (the use of standard equivalences)

Recall...

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny def}}{=} Q$, iff they induce the same truth-function

on any sequence containing their common variables

Property: The relation $\stackrel{\text{val}}{=}$ is an equivalence on the set of all abstract propositions.

i.e., for all abstract propositions P, Q, R, (1) $P \stackrel{val}{=} P$; (2) if $P \stackrel{val}{=} Q$, then $Q \stackrel{val}{=} P$; and (3) if $P \stackrel{val}{=} Q$ and $Q \stackrel{val}{=} R$, then $P \stackrel{val}{=} R$

Strengthening and weakening

We had

Definition: Two abstract propositions P and Q are equivalent, notation P = Q, iff

(1) Always when P has truth value I, also Q has truth value I, and
(2) Always when Q has truth value I, also P has truth value I.

if we relax this, we get strengthening

Strengthening

Definition: The abstract proposition P is stronger than Q, notation P ⊨ Q, iff (1) Always when P has truth value I, also Q has truth value I,and (2) Always when Q has truth value I, also P has truth value I.

Q is weaker than P

Strengthening

Definition: The abstract proposition P is stronger than Q, notation $P \models^{a} Q$, iff always when P has truth value I, also Q has truth value I.

> always when P is true, Q is also true

Q is weaker than P

Properties

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology. Lemma EWI: $P \stackrel{val}{=} Q$ iff $P \stackrel{val}{\models} Q$ and $Q \stackrel{val}{\models} P$. **Lemma W2:** $P \stackrel{val}{\models} P$ **Lemma W3:** If $P \models^{val} Q$ and $Q \models^{val} R$ then $P \models^{val} R$ val**Lemma W4:** $P \models Q$ iff $P \Rightarrow Q$ is a tautology.

Standard Weakenings

and-or-weakening $P \land Q \models P$ val $P \models P \lor Q$

$$\begin{array}{c} \text{val} \\ F \models P \\ P \models T \end{array}$$

Calculating with weakenings (the use of standard weakenings)

