Predicate logic ## Limitations of propositional logic Propositional logic only allows us to reason about completed statements about things, not about the things themselves. Example Some chicken cannot fly All chicken are birds Some birds cannot fly this reasoning can not be expressed in propositional logic Example Every player except the winner looses a match ## Unary predicate (example) Consider the statement 2m>3. a unary relation Whether this statement is true or false depends on the value of m (and on the domain of values). Note: $$2m > 3 \stackrel{\text{\tiny Yal}}{=} m > 3/2$$ on \mathbb{Z} and \mathbb{R} $2m > 3 \stackrel{\text{\tiny Yal}}{=} m \geq 2$ on \mathbb{Z} but not on \mathbb{R} ## Binary predicate (example) The statement 3m+n > 3 is a binary predicate on $\mathbb{R} \times \mathbb{N}$. ## Predicates In general, an n-ary predicate is an n-ary relation. If it is on a domain D, then it's a relation $P(x_1, ..., x_n) \subseteq D^n$ or equivalently a function P: $D^n \to \{0, 1\}$. 2m>3 true for certain values of the variables We can turn a predicate, into a proposition in three ways: - I. By assigning values to the variables. - 2. By universal quantification. - 3. By existential quantification. for m=2 2 · 2 > 3 is a true proposition ## Universal quantification The unary predicate 2m > 3 on \mathbb{Z} can be turned into a proposition by universal quantification: In general: $\forall_x [P(x) : Q(x)]$ for "all x satisfying P satisfy Q" ## Existential quantification The unary predicate 2m > 3 on \mathbb{Z} can also be turned into a proposition by existential quantification: In general: $\exists_{x} [P(x) : Q(x)]$ for "there exists x satisfying P that satisfies Q" ## Quantification The binary predicate 3m+n > 3 on $\mathbb{R} \times \mathbb{N}$ can also be turned into a proposition by quantification: in 8 possible ways One way is: $\exists_m [m \in \mathbb{R} : \forall_n [n \in \mathbb{N} : 3m + n > 3]]$ other standard (!) notation: $\exists m \ (m \in \mathbb{R} \land \forall n \ (n \in \mathbb{N} \Rightarrow 3m+n>3))$ unary predicate binary predicate proposition, nullary predicate ## Additional Notation Rules also for 3 ``` We write \forall_x [P] for \forall_x [T:P] ``` ``` We also write \exists_{m,} \forall_{n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3] for \exists_{m} [m \in \mathbb{R} : \forall_{n} [n \in \mathbb{N} : 3m + n > 3]] ``` ``` And even \exists_{m,n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3] for \exists_m [m \in \mathbb{R} : \exists_n [n \in \mathbb{N} : 3m + n > 3]] ``` but only for the same quantifier! ## Quantification - task Let P be the set of all tennis players. Let $w \in P$ be the winner. Thanks to Bas Luttik For p, $q \in P$, write $p \neq q$ for "p and q are different players". Let M be the set of all matches. For $p \in P$ and $m \in M$, write L(p,m) for "player p loses match m". Write the following sentence as a formula with predicates and quantifiers: Every player except the winner loses a match. 10 ## Equivalences with quantifiers ## Renaming bound variables ## Bound variables $$\forall_x [P:Q] \stackrel{val}{=} \forall_y [P[y/x]:Q[y/x]]$$ $$\exists_x [P:Q] \stackrel{val}{=} \exists_y [P[y/x]:Q[y/x]]$$ if y does not occur in P or Q (not even in $\forall y, \exists y$) ## Domain splitting #### Domain splitting $$\forall_x [P \lor Q : R] \stackrel{val}{=} \forall_x [P : R] \land \forall_x [Q : R]$$ $$\exists_x [P \lor Q : R] \stackrel{val}{=} \exists_x [P : R] \lor \exists_x [Q : R]$$ #### **Examples:** $$\forall_{x} [x \le 1 \lor x \ge 5 \colon x^{2} - 6x + 5 \ge 0]$$ $$\stackrel{val}{=} \forall_{x} [x \le 1 \colon x^{2} - 6x + 5 \ge 0] \land \forall_{x} [x \ge 5 \colon x^{2} - 6x + 5 \ge 0]$$ $$\exists_{k} [0 \le k \le n : k^{2} \le 10]$$ $$\stackrel{val}{=} \exists_{k} [0 \le k \le n - 1 \lor k = n : k^{2} \le 10]$$ $$\stackrel{val}{=} \exists_{k} [0 \le k \le n - 1 : k^{2} \le 10] \lor \exists_{k} [k = n : k^{2} \le 10]$$ ## Equivalences with quantifiers #### One-element domain $$\forall_x [x = n \colon Q] \stackrel{val}{=} Q[n/x]$$ $$\exists_x [x = n \colon Q] \stackrel{val}{=} Q[n/x]$$ #### Example: $$\forall_x [x = 3: 2 \cdot x \geqslant 1] \stackrel{val}{=} 2 \cdot 3 \geqslant 1$$ #### "All Marsians are green" #### Empty domain $$\forall_x [F:Q] \stackrel{val}{=} T$$ $$\exists_x [F:Q] \stackrel{val}{=} F$$ ## Domain weakening #### Intuition: The following are equivalent $$\forall_x [x \in D : A(x)]$$ and $\forall_x [x \in D \Rightarrow A(x)]$ $\exists_x [x \in D : A(x)]$ and $\exists_x [x \in D \land A(x)]$ #### The same can be done to parts of the domain ### Domain weakening $$|\forall_x [P \land Q : R] \stackrel{val}{=} \forall_x [P : Q \Rightarrow R]$$ $$\exists_x [P \land Q : R] \stackrel{val}{=} \exists_x [P : Q \land R]$$ $$P \land Q \models P$$ ## De Morgan with quantifiers #### De Morgan $$\neg \forall_x [P:Q] \stackrel{val}{=} \exists_x [P:\neg Q]$$ $$\neg \exists_x [P:Q] \stackrel{val}{=} \forall_x [P:\neg Q]$$ not for all = at least for one not not exists = for all not Hence: $\neg \forall = \exists \neg \text{ and } \neg \exists = \forall \neg$ It holds further that: $$\neg \forall_x \neg = \exists_x \neg \neg = \exists_x$$ $$\neg \exists_x \neg = \forall_x \neg \neg = \forall_x$$ holds also for quantified formulas! ## Substitution meta rule ### Simple $$\phi \stackrel{val}{=} \psi$$ $$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$ #### Sequential $$\phi \stackrel{val}{=} \psi$$ $$\phi[\xi/P][\eta/Q] \stackrel{val}{=} \psi[\xi/P][\eta/Q]$$ #### Simultaneous $$\phi \stackrel{val}{=} \psi$$ EVERY occurrence of P is substituted! $$\phi[\xi/P, \eta/Q] \stackrel{val}{=} \psi[\xi/P, \eta/Q]$$ holds also for quantified formulas! ## The rule of Leibniz #### Leibniz $$\phi \stackrel{val}{=} \psi$$ $$C[\phi] \stackrel{val}{=} C[\psi]$$ formula that has ϕ as a sub formula meta rule single occurrence is replaced! ## Other equivalences with quantifiers #### Exchange trick $$\forall_x [P:Q] \stackrel{val}{=} \forall_x [\neg Q:\neg P]$$ $$\exists_x [P:Q] \stackrel{val}{=} \exists_x [Q:P]$$ #### No wonder as $$\forall_x [P:Q] \stackrel{val}{=} \forall_x [P \Rightarrow Q]$$ $$\exists_x [P:Q] \stackrel{val}{=} \exists_x [P \land Q]$$ #### Term splitting $$\forall_x [P:Q \land R] \stackrel{val}{=} \forall_x [P:Q] \land \forall_x [P:R]$$ $$\exists_x [P:Q \lor R] \stackrel{val}{=} \exists_x [P:Q] \lor \exists_x [P:R]$$ # Other equivalences with quantifiers ### Monotonicity of quantifiers $$\forall_x [P:Q \Rightarrow R] \Rightarrow (\forall_x [P:Q] \Rightarrow \forall_x [P:R]) \stackrel{val}{=} T$$ $$\forall_x [P:Q \Rightarrow R] \Rightarrow (\exists_x [P:Q] \Rightarrow \exists_x [P:R]) \stackrel{val}{=} T$$ #### tautologies Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology. Lemma W4: $P \models Q \text{ iff } P \Rightarrow Q \text{ is a tautology.}$ still hold (in predicate logic) Lemma W5: If $Q \models R$ then $\forall_x [P:Q] \models \forall_x [P:R]$.